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ABSTRACT:

The formation of the current Rhine-Meuse delta mainly totdce during the last 12 000 years. Consecutive avulsioaissudden
changes in the course of river channels, resulted in a coatpli pattern of sandy channel deposits, surrounded byapéatlay.
Knowledge of this pattern is not only interesting from a getdrical viewpoint, but is also essential when planning araintaining
constructions like roads and dikes. Traditionally, chamieposits are traced using labor intensive soil drillindva@nel deposits are
however also recognizable in the polder landscape by sowll Elevation changes due to differential compaction. gurgose of this
research is to automatically map channel deposits basedtuoctural analysis of high resolution laser altimetryadatfter removing
infrastructural elements from the laser data, local feauactors are built, consisting of the attributes slopeyature and relative
elevation. Using a maximum likelihood classifier, 75 mitligridded laser points are divided into two classes: buriethnel deposits
and other. Results are validated against two data sets, istingxpaleographic map and a set of shallow drilling measemts.
Validation shows that our method of channel deposit deieds hampered by signal distortion due to human intervaniiothe
traditional polder landscape. Still it is shown that relatyoung deposits (4 620 to 1 700 years Before Present) caxtiaeted from
the laser altimetry data.

1. INTRODUCTION differences in compaction, which may lead again to damaged o
uneven road surfaces or even to failing dikes.

During the Holocene (approximately 12 000 years - present),
much of the western and central part of the Netherlands was ad@raditionally, mapping of the shallow subsurface of theriehi
grading, as active river systems (Rhine and Meuse) trateshor Meuse delta is based on soil drillings. A large effort hasnbee
sediments from the hinterland to the coastline. In comimnat made by Dutch Utrecht University: Based on more than 25 years
with sea level rise this resulted in a Holocene sedimentesazpi  of field research using over 200 000 manual boreholes a paleo-
of up to 20 meter thickness. As river channels consist prédom geographic map is composed, (Berendsen and Stouthaméj, 200
nantly of sand while the adjacent floodplains were dominhied see also Fig. 1, right. As the drillings require a large amaiin
clay deposition and peat formation, a strong grain-sizétjuar- manual labor in the field, not the whole Rhine-Meuse delta has
ing occurred. Furthermore, frequent shifts in channeltiooa  been covered in the same amount of detail. Also necessaritgs
due to avulsions, resulted in a complex subsurface of ota/p interpretation and interpolation steps were involved imposing
dominated floodplain deposits laterally and verticallpaiating  the map, which may have introduced local anomalies.
with sand-rich channel areas, (Allen, 1965).

) ) ) ) LIDAR data is being used more and more to reveal and highlight
Currently, buried channel deposits are recognizable ifahe-  morphological and archaeological structures that arelynais-
scape, basically due to a process called topographic iOVers jhe " |n archaeology, LIDAR data has revealed burial mounts
This occurs when floodplain deposits on the sides of the durie (k skiuchi and Chikatsu, 2008), Celtic field systems, (Ktais
channels compact at a higher rate than the channel santl itsef,q Maas, 2008, Humme et al., 2006), and other earthwork fea-
At the surface this results in an area with a higher elevagion tures, (M. Doneus and Jammer, 2008). Spatial scales chagact
the locations of buried channel deposits. Note that the sand i for a certain landscape type, like small scale roughressd
maining from an abandoned channel may not start directlyeat t pe igentified by a spectral analysis of airborne laser sogruta,
surface: channels abandoned relatively long ago may meknwh (Perron et al., 2008). Previous studies, (Berendsen ariebéoty,
have been deeply covered by floodplain deposits. The maximurgooz Munstermann et al., 2008), showed that also buried-cha
height differences between the buried channels and theuswdy o deposits can be visualized using airborne laser data fine
ings are in the order of a meter for relative large and yoursmeh ppN (Actueel Hoogtebestand Nederland) archive.
nel deposits. To some extent it holds that the thinner andrpld
that is, deeper the channel deposits, the smaller also igathe

. In this research it is considered if it is possible to systiérady
difference.

map channel deposits from second generation, high respluti
Knowledge of the location of these channel deposits is esse aﬂgls-i(:litgh:r:/;%?vji(l)lrt?gzelaﬁgb?gnvﬁtrkdapggc:gig:ifhlger-
tial when planning and maintaining large construction vgoak £m, (AHN. 2000). As a test area the so-called Alblasserwizard

motorways and dikes, (Munstermann et al., 2008). Abrupt an .
. i . used, a polder of 350 kfn directly east of Rotterdam. The lo-
unidentified changes in the subsurface may lead to unexpecteCation of this polder is indicated in the inset in Fig. 5. Foist

* Corresponding author. polder, a test data set has been kindly made available bydamov
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Figure 1: Alblasserwaard.eft: Laser altimetry dataRight: Paleogeographic map

Fugro Aerial Mapping B.V. and owner Waterboard Rivieredlan GBKN mask. The ‘Grootschalige Basiskaart van Nederland’
consisting of about 1.2 billion gridded points, see Figeft, | (GBKN) is the Large Scale Standard Map of The Netherlands and
) . . ) is the most detailed and accurate digital topographicadtuese

From this data set points representing hard infrastructeee- 5 qijable in the Netherlands, (GBKN, 2009). It is scalefre
moved in a filter procedure incorporating the Dutch topoBfap ;¢ js comparable to paper maps with a scale between 1:100 and
base map GBKN. Remaining points are classified according Q.5 000, The precision of a point in comparison to anothéntpo
four structural attributes into two classes, channel dépasinon ;1 ihe surrounding is better than 28 cm in suburban areas and
channel deposit. In Section 2. this data filtering and d@sgion  petter than 56 cm in rural areas. The GBKN has a spaghetti-
procedure is discussed. Results are validated in Sect@gsiist gy cture: it only contains classified nodes and edges, rfor i
the digital paleogeographic map and against an interpoetaf  gance road sides, water edges and building contours. fohere

drillings from the Dutch geological database DINOLoket. the GBKN map of the Alblasserwaard has to be converted to an
area map, consisting of classified segments, see Fig. 2andft
2. LIDAR DATA FILTERING AND CLASSIFICATION middle. This area map will then be applied as a mask to remove

those laser points that are in a polygonal segment from an un-
In this section methodology is described aiming at the fflass wanted class, like ‘road'.
cation of airborne laser altimetry points into two classesjed
channel and non-buried channel deposits. A main challemge iTo create segments, the GBKN lines have to be automatically
this research is the huge amount of input points. As the idatst  connected and converted into classified segments. Howlbeee,
strongly influences the methodology, these are describet fir are errors in the database: lines sometimes do not conresettyex
Then it is described how laser points representing hardsafr or lines intersect without a node. Such situations have iddre
tructure are removed before describing the actual claatific  tified and adapted. Lines in the GBKN that do not exactly cetine

method. are attached to the nearest line or node within a certaiarist
o threshold in a snapping procedure. Here a threshold of 10 cm
2.1 Data description is used. Self intersections without nodes are removed bingdd

nodes to the intersection points. Around the resulting arask,

For this research FLI-MAP400 VS laser altimetry data is used an additional buffer of 3m is added to further limit the infhce

measured by Fugro Aerial Mapping BV for the Waterboard RIV_of unwanted objects: for example, ground close to a road-is of

ierenland. An overview of the entire data set is shown in Ejg. . : ;
left. The data was acquired during three days in August 2007ten disturbed, and cannot be considered as representaititieef

with a minimum point density of 8 points per’mThe absolute Situation in a field.
accuracy of a single point is reported to be 3 cm. From this rawg,
data, Fugro derived a Digital Surface Model (DSM) by remgvin
non-terrain points. The DSM points were consecutively mesa
pled to a 0.5m grid using inverse squared distance weiglatitg
organized in tiles of 1.25 1 km. In total the Alblasserwaard
data set was divided into 273 of such tiles To decrease comp
tational efforts, the .5m grid was further downsampled tora 2
grid. As a result, the input data set for this research ctsis
roughly 75 million points.

espite this filtering method, unwanted features still riema
the LIDAR data, see Fig. 2, right, like small trenches anceoth
objects not (yet) registered in the GBKN database. To furthe
decrease the influence of unwanted features, isolatedspairt
LP_oints with a high local variance were additionally remaved

2.3 Channel classification

The points remaining after the removal of non-field objects a

2.2 Removing non-field objects classified into two classes by means of structural classiita
For this purpose first structural attributes are determateghch

In the gridded FLI-MAP data still objects like roads, treesh  grid point. As a result at each grid point a multi variate feat

buildings and water surfaces are present. If unaddress=e th vector is created that can be used as input for a standardeemo

objects complicate the detection of buried channel depo$ite  sensing classification method.

laser data is filtered in two steps with the purpose of onlykege

data representing fields. In the first step, non-field objase-  Slope and curvature attributes At each remaining LIDAR point,

moved using a mask constructed from GBKN data, in the seconthe four following attributes are determined: slope, ctuxe,

step remaining unwanted objects are removed, based onla locBPl and smoothed TPI. Slope is chosen as an attribute because

variability analysis. at both sides of a buried channel, the elevation is incrgasith
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Figure 2: GBKN maskheft: Original GBKN line dataMiddle: Final GBKN mask.Right: GBKN mask overlaid on LIDAR data.

respect to the surrounding field. To derive slope, a planétésifi height data and by looking at independent reference dathjsn
by least squares to a suited squared neighborhood of a LIDARase the digital paleogeographic map, compare Fig. 1,.right
point. From the planar parameters, an estimation of thel locaFig. 3 the location of the training samples is shown. Theltesu
slope is derived using Horn’s method, (Burrough and McDon-of the classification were slightly cleaned using the molpdie
nell, 1998). Curvature is chosen as an attribute becaudertiagn  cal operators ‘majority filter' and ‘conditional dilatiotd remove
at an elevation caused by a buried channel is convex as it is lemall outlying classification results and fill small holeg. €Jain,
cally protruding. Flat terrain has a mean curvature of zetdle 1989).

convex terrain has positive mean curvature. Here an appeexi

tion of mean curvature is derived from local partial derives

by locally fitting a second degree polynomial surface to &esli 3. RESULTS, VALIDATION AND DISCUSSION
squared neighborhood, see for more details (Besl and Jag6) 1
and (Nahib, 1990). In this section the results of the automatic classificaticthe Al-

. blasserwaard LIDAR data are presented, validated andstisdu
SFirst visual results are discussed. Then two validatiorhout
based on soil drillings are described, together with thaltesf

the actual validations.

ment involved in the many slope and curvature determination
a down-sampling strategy is applied. After an analysis fiédi
ent down-sampling rates, in which slope values obtaineah fao
down-sampled data set where compared to slope values flem tfé 1 Visual validation
full 2m grid input data set, it was decided to use only 10 % ef th ™

data.
The blue points in Fig. 5 indicate LIDAR 2m grid points clas-

TPI and smoothed TPI attributes The Topographic Position sified as ‘buried channel’. Clearly some more or less comukct
Index (TPI) is a measure of the elevation of a location comgar channel structures in East-West direction are recogrezaBi-

to the surrounding landscape, (Weiss, 2001). To compute theultaneously, many thicker fragments classified as ‘buchesh-
TPI-value of a single pixel the difference between its eieva  nel‘ are visible. Based on a visual evaluation it is not disec
and the average elevation of a neighborhood around thatscell obvious if these thicker fragments indeed correspond toréla
calculated. Most frequently an annular neighborhood isiuse deposits. Also anomalies are visible in the classificatesults:
that is, all cells between a certain minimal and maximalagise  thin, straight lines appear at many locations and are maioity

are used in the calculation. A positive TPI-value meanstthat responding to terrain close to roads and ditches.

cell is higher than its surroundings (at the specified nesgidod

size) while negative values mean it is lower. A TPIl-valueef Fig. 8 shows a zoom-in of the classification results, agabiuse,
indicates that the cell either lies on a flat area or on a cahsta superimposed on areal imagery data. The area in Fig. 8 approx
slope. The TPl is of course strongly dependent on the scalee H imately corresponds to the red rectangle in Fig. 5. This &nag
TPIl-values are computed using a minimal distance of 80 m and
a maximal distance of 100 m. From the TPI-values also a fourth
attribute is determined, the smoothed TPI. This is just tleam

of the TPI values in a 4% 49 grid points window and helps to
distinguish between small and large scale topographicifest

——wa U A gy
M Palacogeographic map

B Training sample: Non-Channel

B Training sample: Channel

Maximum likelihood classification As a result of the struc-
tural attribute determination, at each grid point a 4D hitie
vector is given, consisting of slope, mean curvature, TRl an
smoothed TPI attribute values. The availability of the¢glatte
vectors allows us to apply standard classification techesdrom
remote sensing. Here Maximum Likelihood classificationgs a
plied.

The Maximum Likelihood Classifier, (Gao, 2008), uses statis
tics from class signatures to determine if a given pixel beto

to a class. Each class signature is derived by manuallytselec
small areas that are known to belong to a certain class. These
areas are called training samples. The training sampléssime-
search have been selected based on manual interpretatioe of Figure 3: Training samples used for the classification pece
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confirms that the classification is still influenced by infras-
ture: The classification algorithm reports buried chanmelar
and at farmyards and along a small ditch which indicatesttieat
GBKN infrastructure database is not complete and that tteg-fil
ing procedure should be further improved.

3.2 Dirilling data description

For this research two independent validation data setsibaise
soil drillings are available. The first is a map product, theand
set consist of a large amount of single drillings, interpddty the
authors.

Digital paleogeographic map A digital paleogeographic map
of the complete Rhine-Meuse delta during the Holoceneahcl
ing the locations of buried channel deposits) is describg@e-
rendsen and Stouthamer, 2001). The Alblasserwaard seaftion
this map, Fig. 1, right, is used as validation in this redeafithe

layers can be present there due to other reasons, like otistr
works. The analysis of all of the drillings in the easterntpsr
shown in Fig. 4. This form of automatic interpretation ofllirg
data is prone to errors. This means that in this case the arobun
correctly interpreted drillings is largely unknown. Still Fig. 4
the spatial correlation between drillings and LIDAR cléissttion
results is visible.

3.3 Validation results

Further visual validation is obtained by comparing the enat-
cally classified LIDAR points to the digital paleogeographap
and to the classified DINO drillings. For this project thisswa
done using the ESRI Flex viewer, (ESRI, 2009). This program
allows internet users to simultaneously view within thermal
browser the different spatial layers on available backgdoim-
agery, just as within a GIS environment. A screen shot is show
in Fig. 8. According to the digital paleogeographic map ffgs

map is based on more than 25 years of field research using overe contains buried channel deposits from three periods- co
200 000 manual boreholes, 45 000 archaeological findings angare Fig. 1, right. In red some relative old (6270-4621 yBR) a
1 200 radiocarbon datings. The map is stored in vector formatwide buried channels are visible, in orange another widighty

each individual area consists of a polygon. For each area 1p t
different attributes are stored like channel size, chatewgth,

younger (4620-3701 yBP) channel is given. while some radbti
young (3700-1700 yBP) smaller channel deposits are shown in

age, year of beginning, year of ending, etc. The age of the-cha yellow. The LIDAR data classified as channel deposit (in plue
nels on the map are given in years Before Present, whererferesegives the best match with the orange channel, while sometmatc
is defined as the year 1950. For this research four main age cahg results on the yellow channels are found as well. Thezmse

egories are distinguished, indicated by different colarEig. 1.

to be hardly no correlation between the blue LIDAR channel de

These periods have been manually chosen based on thewdistritposits, and the large and old red channels. Similarly theséla

tion and amount of channels abandoned in these periods.

Figure 4: Classified DINO drillings.

DINO drillings
mation of the subsurface of The Netherlands, (DINOLoked®0
The archive contains among others shallow boring measuntsme
that are suitable to use as reference data for this rese@hay.
cover primarily the shallow subsurface and contain stadided
information about the type of sediments and their depthotal t
2 680 individual drillings were available for the Alblaseeard.
The eastern part has a high drilling density, in the westam p
only a very limited number of drillings is available.

After importing the DINO data, each drilling was automaliica
analyzed to determine if the drilling was part of a buriedrofel
deposit. This was done by applying a basic filter: searchdonds
layers that are cumulatively more than 3 meters in thickiess

fied DINO drillings give good agreement over the orange chan-
nel, while the DINO drillings give mixed responses over tad r
channel. Many DINO drillings outside the areas classifiethay
two other methods as buried channel are indeed red, butetso h
exceptions exist.

Table 6: Classified LIDAR vs. paleogeographic map

Map with all channels
LIDAR channel 35% 6.3%
non-channel | 23.5% 66.7 %
Map 4620-1700 yBP
LIDAR channel 2.0% 7.6 %
non-channel 54% 84.9 %
channel non-channel

These observations are partly confirmed by the numeric compa
son over the region of Alblasserwaard as a whole. In Table®, t
confusion matrices of the LIDAR buried channel classifimati
compared to the paleogeographic map are given. The topxmatri
compares the LIDAR classification to all buried channelsasho

The DINO database contains data and infor-in Fig. 1, right; in the bottom matrix the comparison is riesé&d

to those channels in the paleogeographic map that are dated b
tween 4620 and 1700 yBP, i.e. the yellow and orange chanmels i
Fig. 1, right. The diagonals give the percentages of pixdiere
map and classified LIDAR agree, the upper right entry is thre pe
centage of pixels that are non-channel in the reference map,
are classified as channel. The reverse holds for the botfoenle

try. Although the overall classification accuracy, i.e. treze of

the confusion matrix, equals 70 %, kappa, a measure of sityila
without chance agreement, only equals= 0.06. By removing

the youngest and oldest channel class from the comparisen, t
amount of agreement improves to 87 % with an associated kappa
value ofx = 0.21.

the shallow subsurface between 3 and 12 meters. If more thahhere are several possible reasons for this lack of agrédemen

3 meters of sand was found, the drilling was classified asturi
channel deposits. In all other cases the drilling was diasisas

First of all it should be noted that a condition for a high d=gr
of agreement is that a buried channel deposit always resuits

non channel. The reason to discard the top 3 meter is that sarldcally higher elevation. Although there is strong eviderleat
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Figure 5: Buried channel classification results. The rethregle approximately corresponds to the area of Fig. 8. ibetishows the
location of the Alblasserwaard in The Netherlands.

this condition in general is fulfilled, it is not yet sufficigyclear,  obtained in the green zones, i.e. regions marked as young; ch

what buried channel characteristics result in what amotiotal nel deposits in the paleogeographic map, Fig. 1, right, e/sher

elevation setup. Other reasons originate in the processitfie  reliable LIDAR surface height data is available.

available information. In the composition of the paleogapdic

map, errors are associated to the interpretation and iteipn

of the used drillings. The reason that the youngest, grdeam-c 4. CONCLUSIONS AND RECOMMENDATIONS

nels in the Paleogeographic map do not give a good comparison

with the classified LIDAR data is simply that these channels e In this work, an original approach for the detection of bdrie

ther still exist at approximately the same location or thalings ~ channel deposits from high resolution LIDAR data has been de

and roads are present along or on the remains. In both cases thcribed and validated. The first results indicate that toesex?

LIDAR data for these regions is simply filtered out in the datatend itis possible to automatically determine the locatibsand-

processing procedure. rich channel areas: relatively young (4620-1700 yBP) arakewi
(~ 100m) channel deposits are often detected by the described

Table 7: Classified DINO drllllngs vs. Classified LIDAR and Pa method based on classification of a feature vector Congisﬁn

leogeographic map. structural attributes derived from LIDAR data. Currentules
DINO drillings are however still far from a form where they could be applied i
LIDAR channel 6.3 % 7.3% for example road construction. The results of this large sasdy
non-channel | 26.8 % 59.6 % also demonstrate that there are many assumptions/stepgadv
Map channel | 15.0 % 18.6 % in both deriving the initial classification results and ididating
non-channel | 18.1 % 48.2 % these results. In future work, the impact of these assumptn
channel non-channel the final results should be further investigated.

Comparison to the paleogeographic map indicates that b de

In Table 7 also the confusion matrices between the classifiedge and probably also size of the channel deposits are pamame
DINO drillings and the classified LIDAR results, top, and the whose influence on the relative elevation should be further i
paleogeographic map, bottom, are given. Both the LIDARItesu vestigated. The digital paleogeographic map is deriveédas
and the map have a comparable percentage of agreementoftracean interpretation of actual soil drillings and an interpioia step
both matrices) with the classified DINO drillings. They donho  to connect identified channel locations to a braided netvedrk
ever differ in the type of misclassification: in the LIDAR sla  channels. This last step has not been implemented yet fawur
sification a relative large percentage of points were diassas tomatic buried channel classification. To improve compoite
non-channel that were channels according to our autonatic i feasibility, the original LIDAR data has been downsampled i
terpretation of the DINO drillings. Again this could be cads this study. To improve classification results it is recomdehto
by currently present infrastructure: many DINO drillinggene  start by analyzing a small area at full resolution in ordeffitst,
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Figure 8: Buried channel classification resullue: Automatic classification LIDAR dataRed, orange, yellow: classification
according to digital paleogeographic map, compare FigReld dots: DINO drillings classified as non-channé&breen dots: DINO
drillings classified as channels.

obtain better insight in what (channel deposit) signalssasetly ~ Jain, A., 1989. Fundamentals of digital image processing.
present in the data and, second, to adapt the classificatimegy  Prentice-Hall, Inc., New Jersey.

accordingly. Kakiuchi, T. and Chikatsu, H., 2008. Robust extraction afient
burial mounds in brushland from laser scanning data. IAPRS
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