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ABSTRACT: 
 
Traditional pixel-based classification methods yield poor results when applied to synthetic aperture radar (SAR) imagery because of 
the presence of the speckle and limited spectral information in SAR data. A novel classification method, integrating polarimetric 
target decomposition, object-oriented image analysis, and decision tree algorithms, is proposed for land use and land cover (LULC) 
classification using RADARSAT-2 polarimetric SAR (PolSAR) data. The new method makes use of polarimetric information of 
PolSAR data, and takes advantage of object-oriented analysis and decision tree algorithms. The polarimetric target decomposition is 
aimed at extracting physical information from the observed scattering of microwaves by surface and volume for the classification of 
scattering data. The main purposes of the object-oriented image analysis are delineating objects and extracting various features, such 
as tone, shape, texture, area, and context. Decision tree algorithms provide an effective way to select features and create a decision 
tree for classification. The comparison between the proposed method and the Wishart supervised classification was made to test the 
performance of the proposed method. The overall accuracies of this proposed method and the Wishart supervised classification were 
89.34% and 79.36%, respectively. The results show that the proposed method outperforms the Wishart supervised classification, and 
is an appropriate method for LULC classification of RADARSAT-2 PolSAR data. 
 
 

1. INTRODUCTION 

LULC classification of PolSAR data has become an important 
research topic since PolSAR images through ENVISAT ASAR, 
ALOS PALSAR and RADARSAT-2 were available. 
Classification methods for PolSAR images have been explored 
by many researchers (Rignot et al., 1992; Chen et al., 1996; 
Barnes and Burki, 2006; Alberga, 2007). Recently some 
polarimetric decomposition theorems have been introduced 
(Cloude and Pottier, 1996; Freeman and Durden, 1998; Yang et 
al., 1998; Cameron and Rais, 2006), and classification methods 
based on the decomposition results were also explored by some 
researchers (Cloude and Pottier, 1997; Lee et al., 1999; Pottier 
and Lee, 2000; Ferro-Famil et al., 2001). The polarimetric 
decomposition is aimed at extracting physical information from 
the observed scattering of microwaves by surface and volume 
for the classification of scattering data. However, so far most of 
the classification methods for PolSAR images are pixel-based, 
and have limitations for representing objects in high-resolution 
images and difficulties to utilize the abundant information of 
PolSAR imagery. The performance of pixel-based classification 
methods is affected by speckles, and only tonal information of 
pixels can be used by these methods. Moreover, the results of 
the pixel-based methods are almost incontinuous raster format 
maps, which are hardly to use to extract objects of interest and 
update geographical information system database expediently. 
 
In recent years, object-oriented image analysis has been 
increasingly used for the classification of remote sensing data 
(Evans et al., 2002; Geneletti and Gorte, 2003; Li, et al., 2008). 
By delineating objects from remote sensing images, the object-
oriented analysis can obtain a variety of additional spatial and 
textural information, which is important for improving the 
accuracy of remote sensing classification (Benz et al., 2004). 
However, with the addition of spatial and contextual variables, 

there are hundreds of features that can potentially be 
incorporated into the analysis. Therefore, feature selection can 
present a problem in object-based classification (Laliberte et al., 
2006). Since recently some polarimetric decomposition 
theorems have been introduced, which brings abundant 
polarimetric information, the problems of feature selection 
become more intractable. 
 
Decision tree algorithms can be used to solve the problems of 
feature selection. Decision trees are commonly used for variable 
selection to reduce data dimensionality in image analysis 
(Lawrence and Wright, 2001). Classification accuracies from 
decision tree classifiers are often greater compared to using 
maximum likelihood or linear discriminant function classifiers 
(Laliberte et al., 2006). Some studies have indicates that 
decision trees can provide an accurate and efficient 
methodology for classification of remote sensing data (Friedl 
and Brodley, 1997; Swain and Hauska, 1977; Mclver and Friedl, 
2002). 
 
The objective of this study is to explore a new classification 
method of integrating polarimetric decomposition, object-
oriented image analysis, and decision tree algorithms for 
PolSAR imagery. In this method, 39 polarimetric descriptors 
were first calculated by using the H/A/Alpha polarimetric 
decomposition and combined with the parameters of the 
scattering and coherency matrix to form a multichannel image. 
Next, during the object-oriented image analysis, image objects 
were delineated by implementing a multi-resolution 
segmentation on the Pauli composition image of RADARSAT-2 
PolSAR data. Meanwhile, a total of 1253 features were 
extracted for each image object. Then, a decision tree algorithm 
was used to select features and create a decision tree for the 
classification. Finally, the LULC classification of RADARSAT-
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2 PolSAR image was carried out by using the constructed 
decision tree. 
 
 

2. METHODOLOGY 

2.1  Polarimetric target decomposition 

Target decomposition theorems were first formalized by 
Huynen (Huynen, 1970), and then many decomposition 
methods were proposed by other researchers. In this study we 
just focus on H/A/Alpha decomposition (Cloude and Pottier, 
1997). The H/A/Alpha decomposition is also called 
eigenvector-eigenvalue based decomposition. This 
decomposition method is free from the physical constraints 
imposed by multivariate models because it is not dependent on 
the assumption of a particular underlying statistical distribution. 
 
The most important observable measured by radar system is the 
3×3 coherency matrix T3, and it is written as: 
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where, Shh and Svv denote the copolarized complex scattering 
amplitudes; Shv and Svh denote the cross-polarized complex 
scattering amplitudes, respectively; * denotes conjugate, 
and ｜｜ denotes module. 
 
According to the H/A/Alpha decomposition theorem, T3 can be 
decomposed as follows: 
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where λ1 λ2 λ3 are the eigenvalues of T3, and ∞>λ1>λ2>λ3>0. ui 
for i=1,2,3 are the eigenvectors of T3 and can be formulated as 
follows: 
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where, the symbol T stands for complex conjugate. 
 
The pseudo-probabilities of the T3 expansion elements are 
defined from the set of sorted eigenvalues. 
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where pi is called the probability of the eigenvalue λi and 
represents the relative importance of this eigenvalue to the total 
scattered power. 
 
In general, the columns of the 3×3 unitary matrix U3 are not 
only unitary but mutually orthogonal. This means that in 

practice, the parameters (α1, α2, α3), (β1, β2, β3), (δ1, δ2, δ3), and 
(γ1, γ2, γ3) are not independent. Thus, each polarimetric 
parameter is associated with a three-symbol Bernoulli statistical 
process. In this way, the estimate of the mean polarimetric 
parameter set is given by (Lee and Poitter, 2009): 
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The eigenvalues and eigenvectors are the primary parameters of 
the eigenvector-eigenvalue based decomposition of T3. The 
different secondary polarimetric descriptors are defined as a 
function of the eigenvalue and eigenvetors of T3 for simplifying 
the analysis of the physical information provided by this 
decomposition (Lee and Poitter, 2009): 
 
1) Polarimetric scattering entropy (H) 
The polarimetric scattering entropy defines the degree of 
statistical disorder of each distinct scatter type within the 
ensemble. 
 
2) Polarimetric scattering anisotropy (A) 
The anisotropy measures the relative importance of the second 
and the third eigenvalues of the eigen decomposition. It is a 
useful parameter to improve the capability to distinguish 
different types of scattering process. 
 
3) Combinations between entropy (H) and anisotropy (A) 
• The (1- H)(1- A) image corresponds to the presence of a 

single dominant scattering process. 
• The H(1- A) image characterizes a random scattering 

process. 
• The HA image relates to the presence of two scattering 

mechanisms with the same probability. 
• The (1- H)A image corresponds to the presence of two 

scattering mechanisms with a dominant process and a 
second one with medium probability. 

 
4) SERD and DERD 
Single bounce Eigenvalue Relative Difference (SERD) and the 
Double bounce Eigenvalue Relative Difference (DERD) are 
sensitive to natural media characteristics and can be used for 
quantitative inversion of bio- and geophysical parameters. 
 
5) Polarization asymmetry (PA) and Polarization fraction (PF) 
PF ranges between 0 and 1, when λ3=0 the entire return is 
polarized, and when λ3>0 the polarization fraction drops. The 
PA measures the relative strength of the two polarimetric 
scattering mechanisms. 
 
6) Radar vegetation Index (RVI) and Pedestal height (PH) 
The RVI was used for analyzing scattering from vegetated areas. 
The PH is another polarization signature of measuring 
randomness in the scattering. 
 
7) Target randomness parameter (PR) 
PR is very close to the entropy (H) and provides the similar 
information. 
 
8) Shannon entropy (SE):  
This parameter is a sum of SEI and SEP. SEI is the intensity 
contribution that depends on the total backscattered power, and 
SEP the polarimetric contribution that depends on the Barakat 
degree of polarization. 
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The information provided by the H/A/Alpha decomposition of 
the coherency matrix can be interrelated in terms of the 
eigenvalues and eigenvectors of the decomposition or in terms 
of secondary polarimetric descriptors. Both interpretations have 
to be considered as complementary. In this study, PolSARPro 
4.0 software was used to implement the H/A/Alpha 
decomposition (López-Martínez, 2005). 
 
2.2 Object-oriented image analysis 

At present most of orbital radar images are obtained using only 
one single frequency. There are significant confusions if 
classification is purely based on a single band of SAR images 
(Li and Yeh, 2004). One way to compensate for the limited 
information of single frequency is to derive more features such 
as texture and shape for the classification beside of spectral 
information of radar images. Object-oriented image analysis can 
be used on radar images to extract such type of information. 
Such analysis is especially useful in improving the classification 
accuracy of high-resolution images (Langford, 2002). 
 
There are two steps in the object-oriented analysis: (1) Image 
segmentation; (2) Feature extraction. In this study, multi-
resolution segmentation was used to delineate objects based on 
shape and color homogeneity (Benz et al., 2004) from the Pauli 
composition image of RADARSAT-2 PolSAR data. Pauli 
composition has become today the standard for PolSAR image 
display, and thus it is often used for visual interpretation and 
observation. In order to obtain the best discrimination results, 
both color and shape heterogeneity is used to adjust the 
segmentation. The object-oriented package, Definiens 
Developer 7.0 (previously called eCognition), is used to 
implement the object-oriented image analysis. 
 
The multi-resolution segmentation algorithm is a bottom up 
region-merging technique starting with one-pixel objects. 
During the region-merging process, smaller image objects are 
merged into bigger ones, and the underlying optimization 
procedure minimizes the weighted heterogeneity of resulting 
image objects for a given resolution over the whole scene. 
Heterogeneity is determined based on the standard deviation of 
color properties and their shapes. The merging of a pair of 
adjacent image objects leads to the smallest growth of the 
defined heterogeneity. The process will stop if the smallest 
growth exceeds the threshold defined by a scale parameter. 
 
Various types of features can be obtained via object-oriented 
image analysis, such as mean value of pixels and standard 
deviation of pixels in an image object, mean difference to 
neighbors, area, length, GLCM Homogeneity, GLCM Contrast 
and so on. The interrelations among objects can be defined and 
utilized as additional information for classification.  
 
2.3 Decision tree algorithm 

The task of this work is to determine the class of each image 
object based on their features. Since a large set of features can 
be extracted from image objects, the selection of proper features 
is important for classification. Decision trees are commonly 
used for variable selection to reduce data dimensionality in 
image analysis (Lawrence and Wright, 2001). Decision trees are 
used to predict membership of cases or objects in the classes of 
a categorical dependent variable from their measurements on 
one or more predictor variables. In these tree structures, leaves 
represent classifications and branches represent conjunctions of 
features that lead to those classifications. 
 

Decision tree algorithms have many advantages: (1) they are 
white box model and simple to understand and interpret. If a 
given result is provided by the model, the explanation for the 
result is easily replicated by simple math; (2) Decision trees are 
able to handle both numerical and categorical data, and requires 
little data preparation; (3) They are robust and perform well 
with large data in a short time; (4) Decision trees, performing 
univariate splits and examining the effects of predictors one at a 
time, have implications for the variety of types of predictors that 
can be analyzed. 
 
In this study, QUEST was used to implement the LULC 
classification. The QUEST is a binary-split decision tree 
algorithm for classification and data mining (Loh and Shih, 
1997). A decision tree can be created based on training samples 
using QUEST. After the decision tree is constructed, it can be 
used to identify the class of other unknown cases. 
 
 

3. IMPLEMENTATIONS AND RESULTS 

3.1 The study area and data processing 

The study area is located in the Panyu District with latitudes 
22º51´ to 22º58´ and longitudes 113º20´ to 113º33´ of 
Guangzhou in southern China. Panyu lies at the heart of the 
Pearl River Delta, and has a total land area of 1,314 km2 and a 
population of 926,542. This district was an agricultural country 
before economic reform in 1978 but has been transformed 
recently into a rapidly urbanized area. Since Panyu became a 
district of Guangzhou in July 2000, intensive land development 
has occurred to provide housing to the residents of Guangzhou 
City. Huge profits have been generated through property 
development, which results in the increase of land speculation 
activities and illegal land development. Accurate and timely 
LULC information can provide government with scientific 
information for making management policies to control and 
prevent illegal developments at an early stage. 
 
The RADARSAT-2 image with the fine quad-pol (FQ12) and 
Single Look Complex (SCL) obtained on 21 March 2009 was 
used in this study (Figure 1.). The image has a full polarization 
of HH, HV, VH and VV, a resolution of 5.2 × 7.6m and an 
incidence angle of 31.5 degrees. Data processing included 
radiometric calibration, geometric calibration, slant range to 
ground range and image filtering. Lee refined filter, which 
proves to be efficient in polarimetric SAR images, was applied 
to the RADARSAT-2 data. 
 
 

 
Figure 1.  RADARSAT-2 Quad-Pol image of the study area 

(Pauli Composition: HH+VV, HV, HH-VV) 
 

The final LULC map displays categories including built-up area, 
water, barren land and vegetation. In field work, a total of 497 
field plots were selected across typical LULC classes based on a 
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clustered sampling approach (McCoy, 2005). A suggestion by 
Congalton and Green (1999), based on experience with the 
multinomial distribution, is to use a minimum of 50 samples for 
each category. A minimum sample unit should be no smaller 
than 3×3 cluster of pixels or a polygon of comparable size for 
either training sites or accuracy assessment sites (McCoy, 2005). 
In this study, the sampling size per field plot ranged from 15 to 
54 pixels, which was determined by the size of a ground photos 
taken concurrently. The collected field plots were divided into 
two groups for the training and validation. There were 210 plots 
in the training group and 287 plots in the validation group. The 
first group was used to select features and create a decision tree 
with QUEST for the classification, and the second group, which 
included 7520 pixels, was used to verify the results of the 
LULC classification. An ALOS image of the 10m multispectral 
bands obtained on 31 November 2008 was used as a reference 
map to assist the collection of ground true information. 
 
3.2 Polarimetric target decomposition results 

The H/A/Alpha decomposition was used to extract polarimetric 
descriptors from the RADARSAT-2 data. A total of 39 
descriptors were extracted and combined with the elements of 
the scattering and coherency matrix to form a PolSAR 
multichannel image. The descriptors and the corresponding 
image channels are listed in Table 2. 
 
 
Channel Descriptor Channel Descriptor Channel Descriptor 

1 HH 19 p2 37 H  
2 HV 20 p3 38 A  
3 VH 21 α  

39 (1-H)(1-A) 

4 VV 22 α1 40 (1-H)A 
5 HH+VV 23 α2 41 H(1-A) 
6 HV+VH 24 α3 42 HA 
7 HH-VV 25 β  43 SERD  

8 T11 26 β1 44 DERD 
9 T12 27 β2 45 PA 
10 T13 28 β3 46 PF  
11 T22 29 δ  47 RVI 

12 T23 30 δ1 48 PH  
13 T33 31 δ2 49 PR 
14 λ  32 δ3 50 SE  
15 λ1 33 γ  51 SEI 

16 λ2 34 γ1 52 SEP 
17 λ3 35 γ2   
18 p1 36 γ3   
 

Table 2.  Descriptors and corresponding channels of the 
PolSAR multichannel image 

 
3.3 Image segmentation results 

The multi-resolution segmentation was used to delineate image 
objects and extract their features. The scale parameter 
determines the maximum change in heterogeneity that may 
occur when merging two image objects. Adjusting of the value 
of scale parameter influences the average object size. A larger 
value leads to bigger objects and vice versa. The optimal scale 
parameters for the multi-resolution segmentation were found 
according to some experiments. The corresponding 
segmentation results related to different segmentation scale 
parameters are shown in Figure 3. The segmentation with a 
scale of 10 was enough to delineate accurate land parcels.  
 

Since the combined image consists of 52 channels, the number 
of features that can be extracted from one single object is as  

 
Figure 3.  Determining the optimal scale for segmentation of 

Radarsat-2 image. 
 

high as 1253. These features are the indigenous parameters of 
Definiens Developer 7.0, and they are listed as the following 
four major categories: 
1) 208 (4×52) indicators related to the statistical values of each 

object: min, max, mean, and standard deviation of each 
layer; 

2) 624 (12×52) indicators related to texture (e.g., Grey-level 
co-occurrence matrix (GLCM) Homogeneity, GLCM 
Contrast, GLCM Dissimilarity, and GLCM Entropy); 

3) 364 (7×52) indicators related to spatial relationship (e.g., 
mean difference to neighbors, and mean difference to 
brighter neighbors); 

4) 57 indicators related to shape (e.g., area, length, number of 
segments, and curvature/length (only main line) were 
extracted from an object; 

 
3.4 Land use and land cover classification results 

The classification maps using the proposed method and the 
Wishart supervised classification were produced as the 
comparison (Figure 4). The Wishart supervised classification 
was implemented by using the PolSARPro 4.0 software (López-
Martínez, 2005). 
 
3.5 Accuracy evaluation 

Accuracy evaluation was carried out based on field 
investigation. The accuracy statistics of these two methods were 
produced in Table 5 and 6. The overall accuracy of our method 
was 89.34%, which was much higher than the Wishart 
supervised classification method, with an overall accuracy of 
79.36%. Moreover, the overall kappa accuracy was also 
increased from 72.41% to 85.76% by using this proposed 
approach. The commission and omission errors can be 
measured by the user’s and procurer’s accuracy. The proposed 
method distinguished each class better than the Wishart 
supervised classification did, especially for identifying the built-
up area. In the Wishart supervised classification, the accuracy of 
the user for the built-up area is very poor (50.28%). In this 
proposed method, however, the user’s accuracy of the built-up 
area was much higher (77.84%). In the classification, industrial 
buildings with wide flat roof were commonly confused with 
barren land because of similar scattering mechanism. Some 
shadow of buildings was also prone to be classified as barren 
land. Otherwise, some buildings that have specific orientations 
not aligned in the azimuth direction or have complex structures 

In: Wagner W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7A
Contents Author Index Keyword Index

201



 

Figure 4.  Land use and land cover classification results (a) 
Proposed method, (b) Wishart supervised classification. 

 
such as rough roofs were assimilated into volume scattering 
class and then assigned to the vegetation class. In some 
mountain area covered with vegetation, some shadow was also 
prone to be classified as barren land. Barren lands with water on 

their surface or high soil moisture were misclassified as water in 
the classification result. Some polluted water areas were also 
assigned to the barren land. 
 
 

4. CONCLUSIONS 

This paper proposed a new method that integrates polarimetric 
decomposition, object-oriented image analysis, and decision 
tree algorithms. The comparison between the proposed method 
and the Wishart supervised classification method indicates that 
the proposed method outperforms the Wishart supervised 
classification method, and can reduces incontinuous 
phenomenon effectively. The results show that the overall 
classification accuracy of the proposed method was 89.34% 
whereas it was 79.36% in the Wishart supervised classification 
method. Moreover, the overall kappa accuracy of the proposed 
method was also higher than that of the Wishart supervised 
classification method. The object-oriented image analysis is the 
suitable image processing method for information extraction to 
support the classification of polarimetric SAR images. Decision 
tree algorithms are efficient tools for the object-oriented 
classification of polarimetric SAR image. The experiments have 
indicated that the proposed method is an appropriate method for 
LULC classification of polarimetric SAR imagery. 
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