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ABSTRACT: 
 
In this paper, four new reduced-references (RR) metrics are proposed for measuring the visual quality of hyperspectral images after 
having undergone spatial resolution enhancement. These metrics can measure the visual quality of hyperspectral images whose full-
reference (FR) image is not available whereas the low spatial resolution reference image is available. A FR metric requires the 
reference image and the test image to have the same size. After spatial resolution enhancement of hyperspectral images, the size of 
the enhanced images is larger than that of the original image. Thus, the FR metric cannot be used. A common approach in practice is 
to first down-sample an original image to a low resolution image, then to spatially enhance the down-sampled low resolution image 
using an enhancement technique. In this way, the original image and the enhanced image have the same size and the FR metric can 
be applied to them. However, this common approach can never directly assess the image quality of the spatially enhanced image that 
is produced directly from the original image. Experimental results showed that the proposed RR metrics work well for measuring the 
visual quality of spatial resolution enhanced hyperspectral images. They are consistent with the corresponding FR metrics.  
 

1. INTRODUCTION 
 
Measurement of image quality is of fundamental importance to 
many image processing applications. Image quality assessment 
algorithms are in general classified into three categories: full-
reference (FR), reduced-reference (RR), and no-reference (NR) 
algorithms. True NR algorithms are very difficult to design and 
little progress has been made (Sheikh et al, 2005). FR algorithms 
are easier to design and the majority of image quality assessment 
algorithms are of this type. In FR quality assessment, a reference 
image of perfect quality is assumed to be available. However, in 
RR or NR quality assessment, partial or no reference information 
is available.  
 
Mean square error (MSE) is the simplest FR metric between the 
reference image x and the processed image y: 
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where N is the total number of pixels in the images x and y. The 
MSE is easy to compute and implement in software and 
hardware. However, the MSE is not a good image quality 
measure as it is not well matched to perceived image quality. 
Two distorted images with the same MSE may have very 
different types of errors, some of which are more visible than 
others. Thus one image may look very much similar to the 
reference, whereas another may look very much distorted.  
 
Peak signal to noise ratio (PSNR) is also a popular FR metric to 
measure the quality of a reconstructed image, and it is defined 
as: 
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The PSNR has been used as a standard metric in image 
denoising and other related image processing tasks.  
 
Wang and Bovik (2002) proposed the Q index for a reference 
image x and an image y to be evaluated, 
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where μx and μy are sample means, σx

2 and σy
2 are sample 

variances, and σxy is the sample cross-covariance between x and 
y. The Q index is a FR metric and it is easy to calculate and 
applicable to various image processing applications. It 
outperforms the MSE significantly under different types of 
image distortions. Wang et al (2004) also developed the 
structural similarity (SSIM) index, which is also a FR metric, by 
comparing local correlations in luminance, contrast, and 
structure between the reference and distorted images. The SSIM 
index is defined as: 
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where μx and μy are sample means of images x and y, σx

2 and σx
2 

are sample variances, and σxy is the sample cross-covariance 
between x and y. The constants C1, C2, C3 stabilize SSIM when 
the means and variances become small. The mean SSIM 
(MSSIM) over the whole image gives the final quality measure. 
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Sheikh and Bovik (2006) developed a visual information fidelity 
(VIF) index for FR measurement of image visual quality. Let 
e=c+n be the reference image, and n zero-mean normal 
distribution ),0( 2IN nσ  noise. Also, let f=d+n′= gc+v′+ n′ be the 
test image, where g represents the blur, v′ the additive zero-mean 
Gaussian white noise with covariance Iv

2σ , and n′ the zero-

mean normal distribution ),0( 2IN nσ  noise. Then, VIF can be 
computed as the ratio of the mutual information between c and f, 
and the mutual information between c and e for all wavelet sub-
bands except the lowest approximation subband.  
 
 

∑
∑=

)|;(
)|;(

zecI
zfcIVIF                                         (5) 

 
 
All the metrics above are popular metrics published in the 
literature for FR image quality assessment. However, they 
require the reference image and the test image to have the same 
image size. After spatial resolution enhancement of 
hyperspectral images, the size of the enhanced images is larger 
than that of the original image. Thus, these metrics cannot be 
used to assess the quality of the enhanced images. A common 
approach in practice is to first down-sample an original image to 
a low resolution image, then to spatially enhance the down-
sampled low resolution image using an enhancement technique. 
In this way, the original image and the enhanced image have the 
same size and the FR metrics can be applied to them. However, 
this common approach can never directly assess the image 
quality of the spatially enhanced image that is produced directly 
from the original image. The image quality of the enhanced 
image measured based on the down-sampled low resolution 
image may or may not reflect the real quality of the image that is 
enhanced directly from the original image, as the down-sampling 
procedure introduces artificial effects.  
 
This paper proposes new RR metrics. A brief review about the 
RR metric is given here. Wang and Simoncelli (2005) proposed 
an RR image quality assessment method based on a natural 
image statistic model in the wavelet transform domain. They 
used the Kullback-Leibler distance between the marginal 
probability distributions of wavelet coefficients of the reference 
and distorted images as a measure of image distortion. A 
generalized Gaussian model was employed to summarize the 
marginal distribution of wavelet coefficients of the reference 
image, so that only a relatively small number of RR features are 
needed for the evaluation of image quality. Li and Wang (2009) 
proposed an RR algorithm using statistical features extracted 
from a divisive normalization-based image representation. They 
demonstrated that such an image representation has simultaneous 
perceptual and statistical relevance and its statistical properties 
are significantly changed under different types of image 
distortions. Engelkea et al (2009) developed RR objective 
perceptual image quality metrics for use in wireless imaging. 
Instead of focusing only on artifacts due to source encoding, they 
followed an end-to-end quality approach that accounts for the 
complex nature of artifacts that may be induced by a wireless 
communication system. 
 
In this paper, four new RR metrics were proposed for measuring 
the image fidelity of a testing image that has higher spatial 
resolution (i.e. larger size than that of the original image). It is 
assumed that a low spatial resolution reference image is 
available, whereas the high spatial resolution reference image is 

not. These four proposed RR metrics do not require the sizes of 
the reference image and the test image to be the same.  
 
The iterative back projection (IBP) (Irani and Peleg, 1991, 1993) 
technique was chosen to enhance the spatial resolution of testing 
hyperspectral images in order to demonstrate the usefulness of 
these metrics. Experimental results reported in section 3 show 
that the proposed metrics can measure the image quality of the 
spatial resolution enhanced images very well. 
 
 

2. CONSTRUCTING NEW RR METRICS FROM 
EXISTING FR METRICS 

 
In this section, four new RR metrics are proposed for assessing 
the image quality of a spatial resolution enhanced image. They 
can be derived as follows. 
 
Let the size of the low spatial resolution image f be P×Q, and the 
size of the corresponding spatial resolution enhanced image g be 
2P×2Q. This means that the spatial resolution of image f is 
enhanced at a factor of 2×2. The following four  down-sampled 
images at a factor of 2×2, can be defined as: 
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where )2:2:,2:2:( QjPig , (i=1,2; j=1,2), is a matrix which 
starts at the pixel (i,j) of image g and extract every other pixels in 
g along both the x and the y directions with a step of 2. Since the 
low spatial resolution image f and the images jig ,  (i,j=1,2) have 
the same image size, one can use any FR metrics to measure the 
image quality between them. The following four RR metrics are 
proposed in this paper: 
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Experimental results conducted in the next section show that 
these four RR metrics can measure the image quality of a spatial 
resolution enhanced image very well. Even though these four RR 
metrics are derived for a special spatial resolution enhancement 
factor 2×2, it is easy to extend it to other spatial resolution 
enhancement factor M×N, where both M and N are positive 
integers. 
 
The IBP is chosen to enhance the spatial resolution of the testing 
images. For simplicity, this paper only considers spatially 
increasing the resolution by a factor of 2×2. It is easy to extend 
IBP to even higher resolution enhancement. IBP consists of two 
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steps: (i) projection, and (ii) back-projection. It enhances spatial 
resolution of an image by performing projection and back-
projection iteratively until satisfactory results are obtained. In 
IBP, the imaging is regarded as a projecting process that includes 
shifting, under-sampling and blurring operations to generate a set 
of low resolution images. So the reconstruction of a high-
resolution image from these low resolution images can then be 
regarded as a back-projecting process which includes de-
blurring, up-sampling and anti-shifting operations. This back-
projection is performed in an iterative way. The IBP algorithm 
converges rapidly, and can meet the need of real-time processing 
since it only deals with some simple operations. Generally, the 
resultant image has satisfactory visual effect after 10 iterations. 
 
For the sake of comparison with IBP, interpolation is used to 
enhance the spatial resolution of the testing images. The bilinear 
interpolation was chosen as the interpolation method in the 
experiments. 
 
 

3. EXPERIMENTAL RESULTS 
 
In this section, a number of experiments were conducted to 
demonstrate the feasibility of the proposed RR metrics. Three 
hyperspectral data cubes were tested in this paper. The 2-
dimensional (2D) band images of the data cubes are used to test 
the proposed RR metrics. The first hyperspectral data cube was 
acquired using the Airborne Visible/Infrared Imaging 
Spectrometer (AVIRIS) in the Cuprite mining district, Nevada, 
in 1997. The original scene with size of 614×512 pixels and 224 
bands is available online at 
http://aviris.jpl.nasa.gov/html/aviris.freedata.html. The upper-
right corner of the scene that consists of 350×350 pixels and 224 
bands are cut out. This scene is well understood mineralogically 
and it has been made a standard test site for validation and 
assessment of remote sensing methods (Chen and Qian, 2007, 
2008a, 2008b, 2009; Wang and Chang, 2006). Due to water 
absorption and low SNR, the bands 1-3, 105-115 and 150-170 
are removed. As a result, a total of 189 bands are used in our 
experiments. Figure 1 shows the image of the Cuprite data cube 
at wavelength 827 nm (band #50). 
 
  

 
 
Figure 1. The AVIRIS Cuprite scene at displayed at wavelength 
827nm (spectral band #50). 
 
 
The second hyperspectral data cube was acquired using the 
airborne Short-wave-infrared Full Spectrum Imager II (SFSI-II). 
The data cube was collected over Key Lake in northern 
Saskatchewan, Canada for studying the capability of imaging 

spectrometers in identifying uranium mine and associated 
activities. The data cube was acquired with a ground sample 
distance (GSD) of 3.19m×3.13m. The size of the data cube is 
1090 lines by 496 pixels by 240 bands.  The scene of the testing 
data cube includes a mill complex and a mine complex. Figure 2 
shows an image at wavelength 1304 nm (band #16) of this data 
cube. 
 
The third hyperspectral data cube was also collected using the 
SFSI-II for studying target detection from short wave infrared 
hyperspectral imagery. The GSD of the data cube is 
2.20m×1.85m. The size of the data cube is 140 lines by 496 
pixels by 240 bands. Man-made targets with different materials 
and sizes were deployed in a mixed of sand and low-density 
grass cover within the scene of the data cube. Seven pieces of 
awnings with varying sizes ranging from 12m×12m to 
0.2m×0.2m, four pieces of polythene, four pieces of white tarp 
and four pieces of white cotton with varying size ranging from 
6m×6m to 0.5m×0.5m were deployed. In addition, a 3m×3m 
piece of white tarp was placed on a large vinyl turf mat of size 
11m×14m. Figure 3 shows a region-of-interest (size: 140×140) at 
wavelength 1289 nm (band #13) of this data cube. 
 
 

 
 
Figure 2. The Key Lake scene displayed at wavelength 1304 nm 
(spectral band #16). 
 

Figure 3. The SFSI-II data cube with man-made targets 
displayed at wavelength 1289 nm (spectral band #13). 

Ideally, the IBP and bilinear interpolation should be used to 
enhance the spatial resolution of every spectral band in the 

In: Wagner W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7A
Contents Author Index Keyword Index

206



 
 

hyperspectral data cubes, and then the proposed four RR metrics 
were used to assess their image quality. However, due to the 
workload of computing the IBP and the metrics for the whole 
datacubes, as a consequence, bands #16, #50 and #13 have been 
chosen in the experiments for the Cuprite data cube, the Key 
Lake data cube, and the Target data cube, respectively. 

The PSNR, Q index, MSSIM, and VIF are of widely used FR 
metrics in image processing. In the experiments, these four FR 
metrics are compared to their corresponding RR metrics. Table 
4 lists the experimental results of the metrics applied to the 
spatial resolution enhanced images by using IBP and 
interpolation. The IBP was run for 30 iterations in order to 
generate a higher quality spatial resolution enhanced image.  
 

 
 

Full-Reference metrics Reduced-Reference metrics 
Data cube 

Spatial 
Enhancement 

Method PSNR Q MSSIM VIF PSNR Q MSSIM VIF 

IBP 36.51 0.82 0.91 0.69 43.82 0.97 0.99 0.87 Cuprite 
Interpolation 35.67 0.78 0.90 0.48 38.37 0.92 0.96 0.75 

IBP 34.87 0.75 0.89 0.77 40.11 0.96 0.98 0.87 Key Lake Interpolation 32.41 0.70 0.87 0.54 34.59 0.87 0.94 0.78 
IBP 53.33 0.78 0.99 0.77 61.67 0.97 1.00 0.98 Target 

datacube Interpolation 53.14 0.74 0.99 0.65 56.35 0.89 1.00 0.88 
 

Table 4. Experimental results of four FR image quality metrics and the four proposed RR metrics of the test images that are spatially 
enhanced by using the IBP and interpolation methods. For the FR metrics, a test image is first down-sampled at a factor of 2×2, then 

spatially enhanced at a factor of 2×2. For the proposed RR metrics, a test image is spatially enhanced by a factor of 2×2 without a 
prior down-sampling. 

 
 
For the FR metrics, a test image is first down-sampled at a 
factor of 2×2, then is spatially enhanced at a factor of 2×2 in 
order to satisfy the requirement of the processed image having 
the same size as the reference image. For the proposed RR 
metrics, an original test image is spatially enhanced at a factor 
of 2×2 without a prior down-sampling. From the table, it can be 
seen that IBP-based method always produces better results than 
the bilinear interpolation no matter whether the original image 
is down-sampled or not. More importantly, the proposed RR 
metrics measure the image quality of the spatial resolution 
enhanced images very well, and they are consistent with the 
corresponding FR metrics. This indicates that the proposed RR 
metrics are reliable metrics for measuring the quality of the 
spatial resolution enhanced images. 
 
 

4. CONCLUSION 
 
In this paper, four new RR metrics are proposed to measure the 
quality of the spatially enhanced hyperspectral images. These 
metrics do not require the sizes of the reference and test images 
to be the same. However, all FR metrics published in the 
literature require both images to have the same size. The IBP and 
bilinear interpolation are used to increase the spatial resolution of 
a testing image. Experimental results show that the proposed 
four RR metrics can measure the image quality of the spatial 
resolution enhanced images very well. Even though only 
hyperspectral images are tested in this paper, the proposed 
metrics can be used to measure the image quality of any other 
spatially enhanced images. 
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