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ABSTRACT:

Remotely sensed images often display spectral variations over heterogeneous regions in the context of land cover classes (LCCs),
which imposes challenges to information extraction from the images. In this paper, an easy-to-apply image classification model,
supervised spectral substratum classifier, is proposed. The classifier first builds spectral LCCs (SLCCs) from a training dataset (TD).
A SLCC comprises the spectral signals of a labeled LCC in TD based on the ground truth. This SLCC is further marked as
homogeneous or heterogeneous according to the statistical properties of the mean value and the standard deviation of all spectral
cases in this SLCC. When this SLCC is marked as heterogeneous, the spectral space of the SLCC will be disaggregated (or clustered)
into substrata by applying statistical cluster analysis. A membership function is then defined for each substratum. To classify images,
fuzzy membership functions are applied to measure similarities between corresponding spectral substrata and any new to-be-
classified cases (pixels). The new cases are classified to the most comparable substrata as determined by the membership functions.
As a case study, a vegetation cover classification over a typical grassland in Inner Mongolia from Landsat ETM+ is conducted. The
result shows that the proposed classification model obtains an overall accuracy of 79.3% and kappa of 0.76. As comparison, a hybrid
fuzzy classifier and a conventional and hard classification of maximum likelihood were applied as references.

* Corresponding author

1. INTRODUCTION

Remote sensing technology has been proved to be practical
and economical means to study land cover changes and to
assess natural resources, especially over large areas (Langley
et al., 2001; Nordberg and Evertson, 2003). Image
classification is widely used to derive useful information from
remotely sensed datasets. Various models, or image classifiers,
have been developed to extract land cover information from
remote sensed images. Image classifiers can be broadly
divided into unsupervised ones and supervised ones.
Unsupervised approaches are often used in thematic mapping
from imagery, and available in most of the image processing
and statistical software packages (Langley et al., 2001). For
supervised classification, a maximum likelihood (ML)
classifier is usually viewed as a classic and most widely used
method (Sohn and Rebello, 2002; Xu et al., 2005). More
advanced classification models, such as artificial neural
network (ANN) and support vector machine (SVM), have
been attempted in recent years (Černá and Chytrý, 2005;
Cristianini and Shawe-Taylor, 2000; Du and Sun, 2008;
Gustavo and Lorenzo, 2009). Fuzzy logic classification, a kind
of probability-based classification, also gets good attentions in
recent years (Triepke et al., 2008).

To get a better classification result, there have been a few
attempts to incorporate different image classification methods.
Lo and Choi (2004) developed a hybrid classification method
that incorporated the advantages of supervised and
unsupervised approaches as well as hard and soft
classifications for mapping the land use/cover of the Atlanta
metropolitan area using Landsat 7 Enhanced Thematic
Mapper Plus (ETM + ) data. They applied a supervised fuzzy

classification to the mixed pixels, and got a slightly better result
than other methods (unsupervised ISODATA, supervised fuzzy,
and supervised maximum likelihood classification methods) in
terms of land use/cover classification accuracy. Laba et al.
(2002) compared the accuracy of a regional-scale thematic map
of land cover at taxonomic resolutions (i.e., different
classification levels). The study showed that the map produced
by the fuzzy-method had an obvious improvement in accuracy
at both low and high taxonomic resolutions. In general, fuzzy
image classifiers are more suitable for heterogeneous areas,
while hard classifications are widely applied in homogeneous
areas (Sha et al., 2008).

We propose in this paper an easy-to-apply fuzzy classification
model (classifier) to extract land cover classes (LCCs) from
remotely sensed images. The classifier first builds spectral
LCCs (SLCCs) from a training dataset. A SLCC will be marked
as heterogeneous if the statistical properties (mean value and
standard deviation) of the cases labeled with this SLCC meet
certain criteria. The spectral space of this SLCC will be
disaggregated (or clustered) into substrata by applying statistical
cluster analysis. Fuzzy membership functions are defined for the
substrata based on the training dataset and then applied to
measure similarities between the new cases and these spectral
substrata and to determine their classifications.

2. METHODOLOGY

Many heterogeneous regions show obvious spectral variations
over LCCs in remotely sensed images. Specifically, the cases
labeled as a single LCC may demonstrate distince spectral
deviations. Under such a condition, the cases labeled as the
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LCC can be clustered into several sub-groups (substrata) with
smaller within-group spectral deviations based on the spectral
properties of the LCC labeled cases. This classification
process is called a spectral substratum classifier.

Five steps are involved in implementing the proposed
classification model. Step 1 creates a classification
information system from the training dataset. Step 2 builds
spectral substrata (SS) space for each SLCC from the training
dataset. Step 3 defines membership functions for assigning
new cases. Step 4 evaluates the classifier’s performance
through a testing dataset. Step 5 classifies new cases by
applying the derived classifier.

Step 1: Creating a classification information system from
the training dataset

For a given nonempty finite set of cases U={xt} (t=1,2,……,n)
where xt indicates case t. Each case xt in U is depicted by a set
of attribute variables Bi={b∙i} (i=1,2,…,m) and labeled by a

class Cj. (j=1, 2, …, n), Cj.
C={C1, C2, …, Ck}, where b∙i has

a continuous value domain, C is a priori class label set, and
the symbol “.” in Cj. indicates one of the candidate classes
from C. That is to say, xt = {bt1 , bt2, …, btm, Cj.} Therefore, U
can also be viewed as a matrix M with n rows and m+1
columns,
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whereas the first m columns are called condition variables and
the last column is a decision result. Cj. denotes different
elements from the candidate class set C. Note that different Bi

may have the same class label.

Any object in U is uniquely determined by the values of its

attributes. In other words, for any object xt
 U with an

attribute set bi describing xt, the object can be uniquely
classified (labeled) as Cj. This form of U (or M) is usually
referred to as a classification information system (CIS). The
notion of classification information systems (sometimes called
data tables, information tables, attribute-value systems,
knowledge representation systems, etc.) provides a convenient
tool for the representation of objects in terms of their attribute
values. The training dataset is taken to build a classifier and
the testing dataset used to test the accuracy of a derived
classifier that has the form of CIS.

Step 2: Building SS-Space for each SLCC from the
training dataset

Let
zjix , denotes the jz

th observation within class Cj for

variable bi, with 1 ≤ jz ≤ n_j, 1 ≤ n_j ≤ n, n_j being the number

of observations in class Cj, and 


k

j

jn
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_ =n. For all cases with

such a unique label as Cj in U, calculate the mean values ( jix , )

and the standard deviations (denoted as )( ji C ) of the

observations labeled as Cj for each variable bi (i=1,2,…, m),
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Let


i be the mean value of )( ji C of all Cj (j=1, 2, … k) for

variable bi (i=1, 2, …, m),
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For m variables (bi) in CIS, we can get a S.D. vector  =

(


1 ,


2 , …,


m ) with dimension m. When )( ji C ≥


i (for

variable bi) happens to a candidate class Cj, there exists a larger
deviation of spectral signals among the observations with

respect to variable bi. Therefore, )( ji C ≥


i is used as a

judgment to mark “heterogeneous” for these cases. A recursive
clustering to these cases labeled as Cj is then performed to
determine substrata of the spectral signals until S.D. of each
SLCC (subclasses of Cj, denoted as Cj∙ where “∙” indicates that

the subclasses come from Cj) satisfies )( .ji C <


i .

A two-step hierarchical clustering analysis is recommended by
using the Statistical Package for the Social Sciences (SPSS)
(http://www.wright.edu/cats/docs/docroom/spss/), with the
original candidate class as priori group and Euclidean distance
as the linkage distance measure for variable bi, and the
unweighted pair-group centroids as the linkage rule (LR). In

addition to the control parameter of


i , each subclass has to

meet the requirement of a minimum number of cases (MNC).
When the minimum case requirement is not satisfied, the cases
will be merged with its nearest subclass in terms of Euclidean
distance.

Accordingly, all the original cases can then be either labeled as

Cj if no clustering is needed on the basis of


i , or Cj-f (f=1,

2, …, p, where p is the total number of the substrata after the
clustered cases are labeled as Cj in the training dataset). In other
word, the original k candidate LCC classes can be extended to

 substrata classes where  =
 

k

j

p

f1 1

1 . For each Cj∙, the

combination of jix , and )( ji C , similarly calculated by

Function (2) and (3), is referred to as a spectral substratum
space (SS space) for variable bi and class Cj∙. A clustering
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analysis based on the CIS creates an SS space vector for each
bi (SSi) with  elements defined,

SS={ SS1, SS2, …, SSn}

and SSi ={ss1, ss2, …, ssr},

where ssi= ( jix , , )( ji C )

(5)

Step 3: Defining membership functions from the training
dataset

For any new object (case) that is attributed by bi (i=1, 2, …,
m), the classification task is to find out a substratum (Cj∙) that
has the most comparable properties to the object. Thus, for
any bi, the following membership function is defined to
calculate the similarity measure (SM) between the object and
the class Cj∙,

jSM = }{ jSMMax

and
jSM =
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where j∙ represents Cj if no clustering analysis is made, or Cj-f

(f=1, 2, …, p) if Cj is grouped into p substrata after clustering.
 is called overlapping coefficient for )( ji C . For any Cj,

SMj∙ is the largest value of the similarity measure from the
subclasses (i.e., substrata from the Cj). It can be seen that SMj∙

=1 if bi = jix , , and SMj∙ =0 if |bi - jix , |≥  ∙ )( ji C . The

class label finally assigned to the object will be the label (Cj)
that presents the closest similarity through the Max operation
defined in Function 6.

For any new case, the defined membership (given by Function
6) compares the similarity between the new case and a number
of known class (Cj or Cj-f) determined from the training dataset.
Instead of directly assigning the new case to a known class,
the function selects the most comparable class, to whichthe
new case belong based on the calculated similarity
measurement (SMj∙).

An Example is provided as an illustration:

Suppose, for variable b1, we have 11,x =0.50, )( 1Ci =0.05;

22,x =0.55, )( 21 C =0.02. A given new case has b1 =0.58

and  takes 3.0.

Scenario 1: According to Function 6, SM1=0.47 and
SM2=0.50. This is to say, the new case shows more similarity
to C2 than to C1. Therefore, the new case is more likely to be
C2 if the variable b1 is taken as the input for consideration.

Scenario 2: When the deviation of sample cases is considered,
the cases labeled as C1 must be subdivided into two substrata
through the clustering analysis, C1-1 and C1-2, because of the

fact that )( 11 C =0.05 ≥


1 =0.035. After the clustering

analysis, we get two SS-spaces for C1-1 and C1-2 respectively,

s1-1 = ( 111 ,x = 0.43, )( 111 C = 0.02) and s1-2 = ( 211 ,x = 0.57,

)( 211 C =0.02).

According to Function 6, SM1=max {SM1,1-1, SM1,1-2} = {0,
0.83} = 0.83, and SM2=0.50. Therefore, the new case is more
comparable to C1 if the variable b1 is taken as the input for
consideration. When there are a set of properties (bi) to depict
an object, a weighted average of SM j for all considered bi is
used to decide the similarity measure,

jj SMSM  


n

1i

i
n

1
 (7)

where jSM is the weighted average SM j for all considered bi,

and ωi stands for the weight for variable bi. We placed equal

weights for the 6 image bands in the case study. jSM measures

the similarity between any new case and Cj, and is computed to
quantify the possibility that the new case belongs to a class Cj.
The given object will be assigned to Cj that has the

largest jSM .

Step 4: Evaluating classifier performance through testing
dataset

The classified results derived from remote sensed images should
be objectively verified and communicated to users so that they
can make informed decisions on whether and how the products
can be used. A testing dataset is used to evaluate the degree of
‘correctness’ of the classified features compared to the actual
ones. Though there are a few evaluation methods, we used a
confusion (or error) matrix to evaluate the classification result,
which describes the goodness of fit between the derived classes
and the reference data through using the measures like overall
accuracy and kappa coefficient.

The testing dataset has a similar format as that of the training
dataset. Any case in the testing dataset has an input vector
denoted as {b1, b2, …, bn} and an actual output class label Cj.
The built fuzzy classifier from Step 3 takes the input vector and
outputs (or assigns) a class label. The classifier outcomes are
compared with the actual ones to build the error matrix. The
overall classification accuracy and Kappa statistic are calculated
to quantify the result (de Leeuw et al. 2006).

Step 5: Classifying new cases by applying the derived
classifier

For any new case that needs to be classified, the derived
classifier, if a reasonable classification accuracy is achieved, is
employed to make classification. To classify a remotely sensed
image, each pixel is a new case that is taken as input to the
derived classifier and an output class label then is determined.
Afterwards, a map covering the image area is sually produced to
show visualize the classification result.
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3. CASE STUDY

The proposed classifier is applied to classify grassland
vegetation from Landsat Enhanced Thematic Mapper (ETM+)
in Xilin River Basin, Inner Mongolia, China (Figure 1). The
study region covers an area of nearly 10, 000 km2 and strides
two Landsat ETM+ scenes. It is one of the most representative
steppe zones in China and the world (Xie et al., 2010). It is
known from the long-term observations and field samplings
that much of the research region is dominated by
heterogeneous plant communities. It is confirmed that hard
and pixel-based image classifications were not the right ways
to map the vegetation cover in this region (Sha et al., 2008).
A vegetation classification system consisting of 11 vegetation
communities is determined based on the plant ecological and
biological features (Table 1). Two image scenes of Landsat
ETM+ (path 124/row 29 and path 124/row 30) on 14 August,
2004, covering the whole region, are obtained and a series of
image preprocessing tasks are performed to produce a
qualified image for classifying vegetation cover (Sha et al.,
2008). Simultaneous 464 ground samples evenly distributed
over the study area were collected in the field with a hand-
held global positioning system (GPS) with an accuracy of 15m
and geo-registered to the image. The ground samples are
divided into two groups: the training dataset and the testing
dataset.

N

900 1, 400 m

Elevation

0 30 km

Chagan
Lake

Huiteng lava
Tableland

Maodeng

Halut

Xilinhot

Xier
Baiinxile

X
il

in

Balyanbaolige

R
iv

er

Inner
Mongolia

P.R China

Xilin River Basin

Figure 1. Study area

The training dataset, including 348 samples with six bands
(variables) and the class labels (C1, C2, …, C11), are taken to
build the spectral substratum classifier. The rest 116 samples
are used to validate its classification accuracy. All of the
samples (training and testing) and the pre-processed image are
used to extract spectral data of each ground sample. Spectral
data for the samples are analyzed with the six reflective bands
of the Landsat ETM+. Bands 1, 2, 3, 4, 5 and 7 of the pre-
processed image are analyzed separately to create a SS space
vector. The six bands of the pre-processed image are
normalized through the following function, respectively,

bi = (b-bMin) / (bMax-bMin) (8)

where bi is the transformed value of any original pixel value (b)
for layer i that has maximum and minimum pixel values given
by bMax and bMin.

class
Community type

(named after dominant species)
Vegetation type

C1 Cleistogenes squarrosa Typical steppe

C2 Stipa grandis Typical steppe

C3 Achnatherum splendens Meadow

C4 Stipa krylovii Typical steppe

C5 Artemisia frigida Typical steppe

C6 Carex pediformis Meadow steppe

C7 Carex spp. Meadow

C8 Caragana microphylla Typical steppe

C9 Leymus chinensis+Stipa baicalensis Meadow steppe

C10 Leymus chinensis Typical steppe

C11 Salsola collina (Chenopodium
glaucum)

Typical steppe

Table 2. Vegetation classification system

The ‘brightness’ value of each image band of the samples in the
training set was normalized according to Equation 8 to produce
a training data matrix of 348 × 7 (six bands + vegetation type).
Similarly, all testing samples were processed to form a testing
data matrix of 116 × 7. These matrixes are two CISs used to
facilitate our analyses. The six variables (bands) along with the
class label from the training matrix were analyzed to form a SS
space vector {SS1, SS2, SS3, SS4, SS5, SS7}. It was found that
the cases labeled with C1, C2, C4, C5, C10, and C11 in the training
dataset for most of the bands were marked heterogeneous and
thus clustering analysis was applied to form substrata. Take
band 1 as an example, a clustering analysis was performed on
the cases originally labeled as C2, C4, and C10 in the training
dataset. The results of the clustering analyses were reported
Table 3. In other words, the cases in band 1 labeled as C2, C4, or
C10 in the training dataset displayed significant variations,
forming seven substrata. Moreover, the spectral variation of the
variable within each substratum was decreasing when it was
further clustered. As Table 2 revealed, the largest variations
occurred with the cases labeled as C2 since most LCCs in C2

produced three substrata, C2-1, C2-2, and C2-3 (Table 2).

The constructed classifier was then applied to the testing dataset
for an accuracy evaluation. The result of the accuracy test
showed that most reference classes with large sizes of cases
could be well predicted by the classifier. The overall accuracy
of the classifier reaches 79.3% with Kappa valued of 0.76
(Table 3). Considering the accuracy obtained from the classifier,
the spectral substratum classifier could be applied to classify the
whole image according to Equations 6)and 7 to derive the final
vegetation cover map over the study region.
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SSband SSi list 

SS1

C1(0.52, 0.03) C2-1(0.18, 0.04) C2-2(0.31,
0.04) C2-3(0.63, 0.04) C3(0.16, 0.02) C4-

1(0.12, 0.02) C4-2(0.67, 0.02) C5(0.49, 0.04)
C6(0.62, 0.02) C7(0.55, 0.03) C8(0.96, 0.02)
C9(0.40, 0.02) C10-1(0.20, 0.04) C10-2(0.50,
0.03) C11(0.52, 0.02)

15

SS2

C1-1(0.38, 0.03) C1-2(0.64, 0.02) C2-1(0.21,
0.02) C2-2(0.31, 0.03) C2-3(0.53, 0.03)
C3(0.67, 0.02) C4-1(0.37, 0.03) C4-2(0.57,
0.04) C5-1(0.35, 0.02) C5-2(0.73, 0.03)
C6(0.36, 0.03) C7(0.54, 0.02) C8(0.70, 0.02)
C9(0.27, 0.02) C10-1(0.20, 0.04) C10-2(0.24,
0.04) C11(0.42, 0.02)

17

SS3

C1(0.61, 0.03) C2-1(0.30, 0.02) C2-2(0.60,
0.02) C3(0.37, 0.02) C4-1(0.24, 0.03) C4-

2(0.50, 0.03) C5(0.46, 0.02) C6(0.28, 0.02)
C7(0.76, 0.04) C8(0.20, 0.03) C9(0.53, 0.02)
C10-1(0.15, 0.04) C10-2(0.33, 0.02) C11-1(0.29,
0.03) C11-2(0.34, 0.02)

15

SS4

C1(0.32, 0.02) C2-1(0.19, 0.03) C2-2(0.50,
0.02) C2-3(0.69, 0.03) C3(0.44, 0.03) C4-

1(0.37, 0.03) C4-2(0.86, 0.02) C5-1(0.27, 0.02)
C5-2(0.60, 0.03) C6(0.65, 0.02) C7(0.23, 0.02)
C8(0.36, 0.02) C9(0.30, 0.02) C10-1(0.28, 0.02)
C10-2(0.53, 0.04) C11(0.45, 0.03)

15

SS5

C1-1(0.28, 0.02) C1-2(0.39, 0.04) C2-1(0.25,
0.04) C2-2(0.44, 0.02) C2-3(0.83, 0.03)
C3(0.49, 0.03) C4-1(0.28, 0.03) C4-2(0.77,
0.03) C5(0.39, 0.04) C6(0.30, 0.02) C7(0.55,
0.02) C8(0.74, 0.03) C9(0.68, 0.02) C10-

1(0.26, 0.03) C10-2(0.72, 0.03) C11(0.31, 0.02)

16

SS7

C1-1(0.26, 0.02) C1-2(0.59, 0.03) C2-1(0.52,
0.03) C2-2(0.78, 0.02) C3(0.45, 0.02) C4-

1(0.32, 0.04) C4-2(0.54, 0.03) C5-1(0.23, 0.02)
C5-2(0.45, 0.03) C6(0.35, 0.04) C7(0.23, 0.03)
C8(0.51, 0.04) C9(0.23, 0.03) C10-1(0.18, 0.02)
C10-2(0.31, 0.03) C11(0.45, 0.03)

15

Table 3. SS space vector derived from the training dataset
(MNC (minimum number of cases) =5)

Reference class
Map
class

C1 C2 C3 C4 C5 C6 C7 C8 C9 C1

0

C11 Total
User’

s

C1 5 2 1 8 62.5
C2 1 23 1 1 1 1 1 29 79.3
C3 6 1 7 85.7
C4 1 15 16 93.8
C5 2 4 6 66.7
C6 2 2 100
C7 1 2 3 66.7
C8 6 1 7 85.7
C9 1 4 5 80
C10 2 2 1 15 20 75
C11 1 1 1 10 13 76.9

Total 8 28 7 20 6 4 3 6 5 18 11 116
P* 63 82 86 75 67 50 67 100 80 83 91

Overall accuracy: 79.3%; kappa=0.76
P* standards for Producer’s

Table 4. Error matrix for the proposed classifier
The classification performance was further assessed in
comparison with other classification models (Table 5). It was
found that the result from the proposed substratum classifier
produced a comparable accuracy as the hybrid fuzzy classifier
(HFC) did in the same study area (Sha, et al., 2008) and had a
much better performance than the conventional supervised
classifier (CSC) model. In addition, in terms of the procedures
involved, the proposed substratum model was relatively easier
to carry out.

Classification method
Percentage
classified

Kappa

HFC(Sha et al., 2008) 80.2 0.77

CSC* 69.0 0.63

Spectral Substratum Model 79.3 0.76
*CSC: Conventional supervised classification on the basis of

maximum likelihood.

Table 5. Result comparison with other models

4. CONCLUSION AND DISCUSSIONS

The proposed spectral substratum classifier essentially adopts a
fuzzy or soft classification strategy. Fuzzy classifiers have been
studied for years and proved to produce more accurate
classifications compared to the hard methods especially over a
hetegeneous environment. Under such a condition,, a pixel in an
image may not display an overwhelming similarity to a LCC.
Instead, it would be better to say that the pixel is more likely
belonging to a LCC.

In the applications of environmental mapping from remote
sensed images, two considerations are usually taken into
account to develop a new classification system, when the
sampled cases in the training dataset show distinct spectral
variations even if they belong to the same LCC. First, if the
spectral variations are within a reasonable limit, all cases can be
treated as a class corresponding to a LCC. Second, if the
variations within a spectral LCC (SLCC) are too large, these
cases can be split into two or more subclasses (substrata). The
derived substrata will be used to replace the original SLCC.
Compared to SLCC, these substrata show much smaller within-
group spectral variations. In our research, a hierarchical
clustering analysis is performed with all the variables in the
training dataset as an input vector to derive substrata for the
LCC cases. Each substratum has a membership function defined
by the statistical properties (mean value and standard deviation)
of the cases labeled with this substratum. During the clustering
process for variable i and class Cj, two parameters are examined
to control its running:

1) First, when the standard deviation of all the subclasses
( )( ji C ) is smaller than a predetermined parameter, i.e.,

the average standard deviation (


i ) for all the original

classes, the clustering stops. This strategy assumes that only
a few classes displaying significant spectral variations
among he labeled cases, are to be generated. In other words,


i is the controlling parameter. Though the value of this

predefined parameter can be manually set, setting it too
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small will lead to too many subclasses (substrata) to be
generated, which may make the classifier over-fitting or
having too many noises and thus lacking prediction power.
In the current case study, we compared a few results by

setting different values for the parameter (i.e.,


i ,

1.5×


i , and 0.5×


i ) and found that 1.0×


i performed

best in terms of the classification accuracy test. However,

the trial-by-error method for setting up a value for


i is

neither robotic nor the best for accuracy assessment.
Future efforts should be made to explore better strategies
for setting up the parameter.

2) Second, when the number of cases in a subclass is smaller
than a predefined parameter, MNC (minimum number of
cases), the analysis also stops. For the similar reason, a
substratum containing too few cases in the training dataset
will also lead to over-fitting or having too many noises.

To measure the similarity between any given case and a
substratum from LCCs, a set of membership functions are
defined based on each SS space of each SLCC. We first define
a membership function for each variable for each substratum
and then combine the effect of all the variables to make an
overall determination function given by band weight vector ωi.
A trial-and-test method is employed to set the suitable weight
vector. The membership function defined to measure the
similarity of a given object to a substratum for a single
variable takes the mean value and the standard deviation of the
variable from the substratum labeled cases in the training
dataset. The empirical parameter that affects the measured
similarity value is the overlapping coefficient (  ). As can be

seen from Equation 6, the increase of  also increases the

similarity measure value. While increasing  may lead to

more cases to be classified, misclassification may occur when
doing so. On the contrary, decreasing  may lead to some

cases that actually belong to a substratum get lower similarity
values and thus may be misclassified to other classes. In the
case study, we adopt a value of 3 for  . This value

considered the statistical properties (mean value and standard
deviation) of the proximity between different classes and had
the best accuracy when compared to other settings.

Although a moderate classification accuracy is obtained by the
spectral substratum classifier in our case study, it is one of the
best classification results among the present literature,
considering the complicated vegetation cover and strong
human influences in this region. In addition, the classifier is
also easy to build and could be widely applicable to different
environment conditions. Therefore, we suggest that the
spectral substratum classifier should be further tested to
extract information from remotely sensed images in other
heterogeneous regions.
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