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ABSTRACT: 

Speckle noise which occurs due to the coherent imaging system is the best known problem of SAR images and in turn, affects 
classification, change detection, biomass estimation and interpretation results. Several adaptive filtering methods have been 
documented to deal with this issue, such as Kuan, Lee, MMSE and Frost filters. These filters do not consider the level of 
homogeneity in the intensity of the pixels. For this reason, they degrade the spatial resolution of image and smooth details, while 
significantly decreasing the speckle noise level. There are other filters such as Enhanced Lee and Gamma Map that utilize the level of 
homogeneity, but they cannot adequately suppress speckle noise. Moreover, pixels whose coefficients of variation are near to 
maximum and minimum threshold values are not correctly filtered using these filters. In addition to these weaknesses, pixels 
surrounding a point scatterer are also treated as point scatterers due to shortcoming of the method of evaluating the coefficient of 
variation for differentiating between them and the point scatterer. We have developed a new method based on the homogeneity level 
for speckle noise suppression and simultaneously edge and feature preservation. Also, an algorithm has been proposed based on local 
statistical information to filter the pixels surrounding point scatterers. The results show an improvement in speckle reduction and 
texture preservation as well as reduction in the number of unfiltered pixels.  

 
1. INTRODUCTION 

 
Speckle noise, also referred to as ‘speckle’ is common to all 
imaging systems which utilize a coherent mechanism to acquire 
images, and SAR images are no exception (Bamler, 2000). In 
coherent systems, backscatter signals add to each other 
coherently and random interference of electromagnetic signals 
causes the speckle noise to occur in the image (Saevarsson et 
al., 2004). In fact, speckle is multiplicative noise that alters the 
real intensity values of features in a scene (Dong et al., 2001). 
Hence, speckle reduces the potential of SAR images to be 
utilized as effective data in remote sensing applications such as 
classification and segmentation, change detection, biomass 
estimation and interpretation, due to a degradation in 
appearance, quality and the recorded power of returns (Ali et 
al., 2008; Lee and Pottier, 2009). For this reason, speckle 
reduction becomes one of the more important tasks in radar 
remote sensing.  

The main requirements that speckle suppression methods must 
meet are speckle reduction, and edge or texture preservation 
(Dong et al., 2001).  In homogeneous areas filtering should only 
reduce the speckle noise level. A minimum unbiased estimator 
such as mean filter or box filter can perform very well and 
efficiently reduce speckle noise level over these areas (Lopes et 
al., 1990 b). Conversely, in the more heterogeneous areas, an 
ideal filter should suppress speckle noise and simultaneously 
preserve the edges and features, so a mean filter is not reliable 
for this type of data. According to these considerations, a good 
adaptive filter should have two important characteristics; first it 
should use an efficient discriminator to separate the speckle 
from the textural information and secondly, the filter should 
adaptively deal with speckle noise based on the type of speckle 
noise model which it follows (Lopes et al., 1990 b).  

In general, speckle noise filters are grouped into two main 
categories:  

 
• Statistical filters that use a priori statistical knowledge about 

speckle noise, the most common being Lee (Lee, 1981), 
Frost (Frost et al., 1982), Kuan (Kuan et al., 1985). These 
filters smooth speckle adequately, but they do not preserve 
details efficiently. Other statistical filters maintain feature 
information at the cost of poor speckle noise reduction, such 
as the Gamma Map (Lopes et al., 1990 a) and Enhanced Lee 
(Lopes et al., 1990 b) filters while all of the mentioned 
filters are based on speckle models. In addition, the latter 
filters are not able to filter large parts of images where the 
coefficient of variation is weak as explained later. There are 
other statistical filters such as mean and median filters 
which are not based on speckle models.  

• frequency domain methods, such as Wavelet and Fourier 
transformations (Dong et al., 2001; Saevarsson et al., 2004; 
Maycock et al., 2007). These filters are not based on speckle 
models. 

In this paper we aimed to develop a filtering method that can 
reduce the speckle noise and at the same time preserve the 
edges and features to acceptable levels.    

 

 

2. SAR FILTERING CONSIDERATIONS 
 

According to Lopes et al. (1990 b) common adaptive statistical 
filters have been developed based on the multiplicative noise 
model that assumes backscatter from a pixel originates from a 
large number of scatterers with independent phase and 
amplitude.  This is not the case for built-up areas. Moreover, for 
the edges and some textured areas where details are smaller than 
the spatial resolution, the multiplicative noise model is 
unsatisfactory. Hence, for these two situations these filters are 
not efficient. On the other hand the filters mentioned above are 
based on using the local coefficient of variation, which is the 
ratio of standard deviation to the mean of pixels. This is known 
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to be an efficient index of the homogeneity level of pixels over 
an image, but not a good textural measure as are second order 
statistical indicators such as the variance (Paudyal et al., 1995). 
In addition to these considerations there are some other 
shortcomings of filters using coefficient of variation as follows: 

1- Using the coefficient of variation for the pixels that surround 
a point backscatterer is not reliable, because the coefficients of 
variation of these pixels are large, since their coefficient of 
variation is affected by the central pixels which are expected to 
be the point scatterers. This shortcoming causes these pixels to 
be inadequately filtered compared with the point scatterers. 
Therefore, applying a robust algorithm to deal with this problem 
is a demanding task. 

2- Pixels with coefficients of variation near to Cmax, the 
maximum coefficient of variation, are not filtered. Also pixels 
with coefficients of variation near to Cu, the averaged 
coefficient of variation over homogeneous areas, are averaged; 
although they are not classified as homogeneous areas, the 
averaging process will cause details to be lost.  

3- For most statistical filters, averaging the pixels in 
heterogeneous areas with edges can lead to errors in filtered 
pixel values, because pixels with different noise models are 
combined in the averaging process.  
 

 
3. METHODOLOGY 

 
According to the previous section, in order to reduce or remove 
the above problems the following tasks are required; (i) A more 
robust criterion to discriminate different parts of image must be 
developed, not only based on homogeneity, but also according 
to textural features, (ii) The averaging of pixel values should be 
based on pixels whose speckle noise models are similar, and 
(iii) The development of an algorithm that deals with pixels 
which surround point scatterers or have homogeneity levels near 
to the maximum coefficient of variation. The method developed 
in this paper has been based on the determination of four 
thresholds from a standard deviation map derived within a 5 ×5 
window. The method can be extended to larger windows. 
 
3.1 Textural Criterion 
 
In this study we have used edge detection masks to generate a 
new criterion for separating different textural areas in a SAR 
image. Considering a 5 × 5 window, it is possible to divide this 
window into nine 3×3 sub-windows corresponding to nine 
geographic directions. The mean value for each sub-window, 
which is called a sub-mean, is calculated and four 3×3 edge 
detection filters are separately scanned over the sub-means. 
Then, the results are summed and set to absolute values. This 
process results in 4 numbers whose standard deviations can 
provide textural information for different parts of a SAR image. 
The standard deviation map can be used as a textural criterion. 
The edge detection filters used are as follows: 

�−1 0 1−1 0 1−1 0 1� , � 0 1 1−1 0 1−1 −1 0� , � 1 1 10 0 0−1 −1 −1� ,�1 1 01 0 −10 −1 −1� 
According to Lee and Pottier (2009), these filters are affected 
by speckle noise less than other filters such as the Sobel filter.   
 
3.1.1 Areas without Edges   
 
Since no significant edges or textural features exist in a 
homogeneous area, except for some isolated pixels with very 

high or low values, it is possible to select the average value of 
the standard deviation map, VNE, as the threshold.  The areas 
with the standard deviation map values below the threshold 
contain no significant feature. Isolated points and their 
surrounding pixels will have relatively high standard deviation 
values compared to other pixels. In order to reduce the number 
of these pixels that may be filtered during the filtering process, 
we defined a second threshold, VNE-max, which is the maximum 
value of the standard deviation map over the homogeneous area. 
Since using the maximum value results in some edges to be 
smoothed over edge areas, in order to reduce this problem, it is 
possible to select an area that has no point scatterers, where the 
standard deviations follow irregular curves, over edge areas. 
The average standard deviation of this area is the second 
threshold for the homogeneous area with a value between VNE 
and maximum value of standard deviations. In summary, the 
non-edged area is divided into two different sub classes using 
two thresholds. 
 
3.1.2 Edge Areas 
 
The second class includes pixels that include edges and textural 
information. The low threshold of this class is VNE-max which is 
the high threshold of the previous class. The high threshold of 
this class, VE-max can be the maximum value in the standard 
deviation map over the area that includes edges and textural 
information.  However, in order to decrease speckle noise level 
more over the heterogeneous area, it is better to select the 
average value of the standard deviation map over point scatterer 
areas as the high threshold for this class.  The map of standard 
deviations over these areas appears as circular shapes, or closed 
curves. 
 
3.1.3 Isolated Point Targets 
 
The third class covering the remainder of image represents the 
point scatterer pixels and their neighbours. These pixels appear 
as closed curves and circular shapes in the standard deviation 
map and have the highest values. Figure 1 shows a part of 
standard deviation map including the different classes. 

 

Figure 1. Standard deviation map for a part of study area; the brightest 
closed curves represent features, opened curves are edge areas and dark 
parts indicated homogeneous areas. 
 
3.2 Filtering Scenarios  
 
Since there are three different classes in terms of textural 
information over the images with different homogeneity levels, 
according to Lopes (1990 b) we need to use different scenarios 
for these different classes.  
 
3.2.1 Non-edge Class Filtering 
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According to previous section this class should be divided in 
two sub classes. The first sub class includes pixels with standard 
deviation values less than or equal to VNE, which means that 
there is no textural information over this sub class. Hence, a 
minimum variance unbiased estimator can efficiently reduce the 
speckle noise level over this sub class without considering the 
textural information. The second sub class that comprises pixels 
with standard deviation values between VNE and VNE-max, 
describes isolated point scatterers. In this case there are two 
groups of pixels (i) pixels whose coefficients of variation are 
less than or equal to Cmax , the coefficient variation over 
heterogeneous area, and (ii) pixels with coefficients of variation 
higher than Cmax.  

For the first group, the mean value of pixels within the selected 
window is used as the filtered pixel value because they are 
considered to be in the non-edge class and using the mean value 
does not degrade the spatial information. The second group 
represents isolated points and their surrounding pixels. 
According to section 2, one of the most important problems 
with the existing filters is that they consider the neighbouring 
pixels of point scatterers in the same way as the point scatterers 
themselves, since the coefficient of variation is not reliable for 
these pixels and hence is unable to separate them from the 
central point scatterer. In order to solve this problem and to 
filter these pixels we developed an algorithm that is called 
‘point scatterer discriminator’. This algorithm is based on the 
assumption that the difference of pixel values between point 
scatterers and their neighbours is high. After labeling a pixel as 
a candidate point scatterer, having a coefficient of variation 
higher or equal to Cmax, a 3×3 window is centered on this point. 
Then, the maximum and minimum pixel values of this window 
are selected and the following equation is executed on all pixels 
within the window: 

D = 
��	
�������	
����	�                  (1) 

 Where DNmax= the highest value within selected window 

             DNmin= the lowest value within selected window  

             DNij= the pixel value of pixel (i,j) 

Then the median and mean values for the matrix of the 
differences, D, are calculated and the larger value, M, is used to 
make a decision about the central pixel. If the central value of 
the matrix of differences is less than M then this pixel is known 
as a point scatterer, otherwise the pixels whose difference 
values are more than or equal to M are selected and the 
coefficient of variation for  selected pixels is calculated. As 
mentioned this sub class is not expected to include textural 
information except point scatterers. For this reason, the pixel is 
known as a point scatterer provided its coefficient of variation is 
higher than Cu, the averaged coefficient of variation over a 
homogeneous area, otherwise the mean value of the selected 
pixels is assigned as a filtered pixel value. Some isolated points 
with very low pixel values derived from this algorithm may also 
be preserved. These points are not recognized as point scatterers 
in the first step of this algorithm; however, the second and third 
steps can solve this problem.   
 
3.2.2 Edge Class Filtering 
 
Filtering the image over this class is more complicated than the 
other classes because these areas include textural information 
such as edges and built-up areas. For this reason, using the 
mean value over this class causes smoothing of the textural 

information and degrading of the image details; however, there 
will still be some homogeneous areas within this class that 
should be smoothed using a mean filter. Since the mean value of 
the standard deviation map over the point scatterer areas is used 
for VE-max, there will be some point scatterers over this class that 
should be preserved.  According to these considerations there 
are three types of pixels, those for which C is less than or equal 
to Cu, those for which C is between Cu and Cmax and those 
whose coefficients of variation are more than Cmax. 

According to Lopes et al. (1990 b), pixels whose coefficients of 
variation are less than or equal to Cu follow a fully developed 
speckle noise model, and should be averaged. Since within the 
edge classes the pixel values vary in terms of homogeneity 
level, averaging all pixels should result in a loss of detail. So, it 
is necessary to select only pixels whose coefficients of variation 
are less than or equal to Cu for averaging. For the pixels whose 
coefficients of variation are higher than Cmax, the point scatterer 
discriminator algorithm is used, thus preserving the point 
scatterers and their neighbours.        

The most complicated filtering in this class is on the pixels 
whose coefficients of variation are between Cu and Cmax 
because pixels in this category display edges and more textured 
areas. On one hand using simple averaging for these pixels is 
unreliable because of the high variability among the pixels. On 
the other hand, even if we utilize averaging using only pixels 
whose coefficients of variation are between Cu and Cmax, it will 
introduce errors because they are not the result of fully 
developed speckle model. Hence, weighted averaging using 
more similar pixels in terms of homogeneity is more reliable for 
the filtering. 

In order to deal with filtering of this part, after selecting pixels 
whose coefficients of variation are between Cu and Cmax, the 
following equation called homogeneity likelihood (HL) is 
applied to find pixels of similar homogeneity within a window 
with respect to the central pixel: 

HL= � ������	
�����                     (2) 

Where   Cc= coefficient of variation for central pixel 

        Cij= coefficient of variation for pixel (i,j) within the 
window 

This index shows the similarity between neighbouring pixels 
with no fully developed speckle model and the central pixel. 
The lower the value of a pixel, the higher the similarity with the 
central pixel in terms of speckle model. Then this index is used 
to weight pixels using the following expression: 

     w ij= exp (- HL)        if Cu < Cij < Cmax 

     w ij= exp (- ∞)            if Cij <= Cu or Cmax <= Cij        (3) 

And in order to normalize the weighting factors, we have:  

W= ∑ ∑ ��,�����                   (4) 

Then the weighted mean value is calculated as follows: 

��� = 
∑ ∑ �.�,���	 �                (5)  

Where            ��,� is the pixel value (i,j) 
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After calculating the weighted mean, the coefficient of variation 
is calculated for the selected pixels. If this value is less than or 
equal to Cu, the filtered value is equal to weighted mean value, 
while if it is higher than Cmax then the original value is 
preserved. For the pixels whose coefficients of variation are 
between Cu and Cmax, the filtering method is as follows: 

Filtered pixel = ���× B+Z× (1-B)       (6) 

B is calculated according to the following equation: 

B= exp (- K×N)              (7) 

Where      K = damping factor 

And N is calculated as follows: 

N = 
�!�����	
���!�               (8) 

Where    CSij = coefficient of variation for selected pixels 

It is apparent that equations (6), (7) and (8) are similar to the 
equations that were proposed for enhanced Lee filter. It means 
that the more heterogeneous the pixels, the less filtering. 
However, there are some differences with the enhanced Lee 
filter including using the weighted mean instead of simple 
averaging, and applying the coefficient of variation for the 
selected pixels instead of calculating this value for all pixels 
within the window. There are some advantages in applying 
these changes. First, as mentioned in section 2, pixels whose 
coefficients of variation are close to Cu are averaged; however, 
their coefficients of variation are higher than Cu and their 
speckle model is not fully developed. Through using the 
weighted mean, this problem is removed because if B equals 1, 
then the filtered value is set to the weighted mean based on the 
noise model similarity. Moreover, for the pixels whose 
coefficients of variation are close to Cmax the Enhanced Lee 
filter treats them as point scatterers, while the modified method 
is able to filter them through calculating the coefficient of 
variation for the selected pixels.  
 
3.2.3 Point Scatterer Class Filtering 
 
Pixels that have values more than or equal to VE-max in the 
standard deviation map are categorized as point scatterer 
candidates because some of them are pixels surrounding point 
scatterers. Therefore, it is necessary to use the point scatterer 
discriminator algorithm to find which pixels are point scatterers.  
 

 
4. FILTER ASSESSMENT 

 
There are several methods to assess the filtered image 
quantitatively according to different aspects such as noise 
reduction, edge preservation, feature preservation (Sheng and 
Xia, 1996).  The results of these different measurements can be 
contradictory. Hence, different assessment methods should be 
used to find the optimum tradeoff among the different aspects of 
image quality assessment (Qui et al., 2004).  
 
4.1 Equivalent Number of Looks (ENL) 
 
This index is calculated using the following equation (Gagnon 
and Jouan, 1997): 

ENL= ( �#$�
%&$�'$(' '#)�$&�*�),             (9) 

The higher ENL value for a filter, the higher efficiency in 
smoothing speckle noise over homogeneous areas. 
 
4.2 Speckle Suppression Index (SSI) 
 
This index is based on the equation as follows: 

SSI= 
-)$( (./)
�#$� (./) × 

�#$� (.0)
-)$( (.0)          (10) 

Where      If = filtered image 

                Io = noisy image 

This index tends to be less than 1 if the filter performance is 
efficient in reducing the speckle noise (Sheng and Xia, 1996).  
 
4.3 Speckle Suppression and Mean Preservation Index 
(SMPI)  
 
ENL and SSI are not reliable when the filter overestimates the 
mean value. We developed an index called Speckle Suppression 
and Mean Preservation Index (SMPI). The equation of this 
index is as follow: 

SMPI= 1 × -)$( (./)
-)$( (.0)            (11) 

And Q is calculated as follows: 

Q= R+34567 (8*) −  4567 (89)3            (12) 

Where     R=   
:;< (=>;?(@A)) – :C? (=>;?(@A))

�#$� (.0)              (13) 

According to this index, lower values indicate better 
performance of the filter in terms of mean preservation and 
noise reduction. 
 
4.4 Edge-Enhancing Index (EEI) 
 
This value indicates how much a filter is able to preserve the 
edge areas and is defined as (Sheng and Xia, 1996): 

EEI= 
∑3��D/���E/3
∑|��D0���EG|             (14) 

Where, DN1f and DN2f = filtered values of the pixels on either 
side of the edge 

              DN1o and DN2o = original values of the corresponding 
pixels  

EEI values are usually less than 1 and higher values indicate 
better edge preservation capability. 
 
4.5 Image Detail-Preservation Coefficient (IDPC) 
 
The correlation coefficient between original image and filtered 
image over fine details such as point scatterers is defined as 
IDPC (Sheng and Xia, 1996).  
 

 
5. RESULTS 

 
In order to test the Proposed algorithm, we used ground-range 
HH and HV polarized L-band magnitude ALOS data that were 
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extracted from SLC data with dimensions 2031×1936 pixels. 
These images cover some homogeneous areas such as water 
bodies, forests, agricultural lands and urban areas and HH 
polarized image is shown in figure 2.  

 

Figure 2. The HH polarized L band image; red rectangular shows the 
selected homogeneous area, yellow rectangular represents the selected 
edged area 
 
5.1 Speckle Reduction 
 
For the assessment of the performance of the filters to suppress 
speckle noise over selected homogeneous area, we used the 
three indices shown in table 3.   

Filter image 
Mean 
(×10-3) 

SD 
 (×10-3) 

ENL 
SSI 

(×10-3) 
SMPI 
(×10-3) 

Noisy 
image 

HH 101.30 53.3 ---- ---- ---- 
HV 28.70 14.8 ---- ---- ---- 

Lee  
HH 101.31 16.8 36.37 315 8.2 
HV 28.70 4.3 44.55 291 7.5 

Kuan 
HH 101.31 16.8 36.37 315 8.2 
HV 28.70 4.4 42.55 297 7.7 

MMSE 
HH 101.31 16.8 36.37 315 8.2 
HV 28.70 4.3 44.55 291 7.5 

Frost 
K=1 

HH 101.30 18.1 31.32 340 8.8 
HV 28.70 4.7 37.29 318 8.2 

Enhanced 
Lee 
K=1 

HH 100.95 28.5 12.55 537 16.8 

HV 28.60 8.2 12.16 556 16.2 

Gamma 
Map 

HH 98.70 20.9 22.30 402 20.2 
HV 27.96 5.76 23.56 399 20.1 

Proposed 
K=1 

HH 101.16 18.9 28.65 355 9.6 
HV 28.70 5.1 31.67 345 8.9 

Table 3. Speckle noise reduction indices for the filtered images 

As table 3 shows, the performance of Lee, Kuan and MMSE 
filters are very good for suppressing the speckle noise over the 
homogeneous areas whereas Enhanced Lee filter is not able to 
reduce the speckle noise efficiently. The Proposed method listed 
in the last line of table 3 shows comparable results in speckle 
noise reduction for HH polarized image. 
 
5.2 Edge Preservation 
 
In order to use EEI index, the edge between water body and 
land was selected. This area is shown within a yellow rectangle 
in figure 1. The results of this index for the filters are given in 

table 4. The best algorithm performance for the edge 
preservation with the highest EEI values is the Enhanced Lee 
and the Proposed method respectively. On the other hand, Frost, 
Kuan, Lee and MMSE filters are not able to preserve the edges. 
It is estimated that in filtered images derived using the 
Enhanced Lee filter and the Proposed method, edges are up to 2 
times sharper than Lee, Kuan, MMSE and frost filters.     

Filter image EEI (×10-3) 

Lee  
HH 396.7 
HV 262.8 

Kuan 
HH 448.1 
HV 289.5 

MMSE 
HH 361.9 
HV 244.5 

Frost 
K=1 

HH 313.4 
HV 254.8 

Enhanced Lee 
K=1 

HH 999.7 
HV 918.1 

Gamma Map 
HH 968.2 
HV 731.6 

Proposed 
K=1 

HH 999.0 
HV 833.2 

Table 4. Edge index values for different filters 
 

5.3 Preservation of Details  
 
More than one thousands pixels representing significant features 
were selected separately over the two images and, the 
correlation between filtered and original images over the 
selected pixels was calculated. Table 5 presents the results of 
this index. The best feature preservation performance belongs to 
Proposed method and Enhanced Lee filter for which their index 
values show no variation for all features. 

Filter image IDPC 

Lee  
HH 0.94 
HV 0.96 

Kuan 
HH 0.95 
HV 0.96 

MMSE 
HH 0.94 
HV 0.94 

Frost 
K=1 

HH 0.91 
HV 0.89 

Enhanced Lee 
K=1 

HH 1.00 
HV 0.99 

Gamma Map 
HH 0.98 
HV 0.98 

Proposed 
K=1 

HH 1.00 
HV 1.00 

Table 5. IDCP of the filters over selected features 
 

5.4 Filtering of Pixels 
 
According to section 2, some pixels should be preserved and do 
not need to be filtered. On the other hand, a filtering method 
should filter all pixels where necessary. As mentioned earlier, 
some pixels surrounding features and point scatterers that 
should be filtered but are not filtered by the Enhanced Lee and 
Gamma filters because of the deficiency of the coefficient of 
variation in their location. We developed an algorithm to deal 
with this problem. In order to assess this algorithm, 100 pixels 
representing point scatterers were selected over these images 
and the coefficient of variation map assessed. Then the filtered 
pixels were divided by the corresponding pixels of original 
images within a 5×5 window. In this way, pixels whose values 
are 1 are categorized as unfiltered pixels. The results were given 
in table 6.  
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Filter Image 
Number of 

unfiltered pixels 

Filtering 
performance 

(%) 
Enhanced 

Lee 
K=1 

HH 2229 11 

HV 2347 6.1 

Gamma Map 
HH 2162 13.5 
HV 2322 7.1 

Proposed 
K=1 

HH 1374 45 
HV 1459 41.6 

Table 6. Number of unfiltered pixels over point scatterers 

Table 6 reveals that the point scatterer discriminator algorithm 
can perform very effectively in compensating for the deficiency 
of calculating the coefficient of variation for the pixels which 
are near the point scatterers. As this table shows, filtering 
performance for the Enhanced Lee and Gamma filters over 
selected point scatterer areas are very poor as they are able to 
filter less than 14 percent of these pixels whereas the proposed 
filter increases the number of filtered pixel to 45 percent.    
   
   

6. CONCLUSION 
 

In this study a new algorithm based on coefficient of variation 
similarity and using a new criterion to segment different parts of 
the SAR image has been proposed. This method was compared 
to six common filters using different quantitative assessment 
methods. According to the assessments that were used in this 
study, some filters such as Lee, Kuan and MMSE filter perform 
very efficiently in dealing with the problem of speckle noise at 
the expense of smoothing features and edges. Some other filters 
such as Enhanced Lee and Gamma Map can preserve details 
very efficient, but they are not able to reduce speckle noise. In 
addition to this, the inadequacy of the coefficient of variation 
causes these filters to be unable to deal with the problem of 
speckle noise of the pixels surrounding point scatterers and fine 
features. Meanwhile, pixels whose coefficients of variation are 
close to Cu are averaged, while if they are higher than Cu they 
should be treated as pixels whose speckle noise model is not 
fully developed.  

In this study we proposed a novel model to deal with these 
problems. As the results show, the proposed filtering method 
can perform acceptably well in speckle reduction and 
simultaneously edge and feature preservation. In addition to 
this, the point scatterer discriminator algorithm that was 
developed in this study and used in the structure of the proposed 
method can compensate for the deficiency in the coefficient of 
variation in separating between point scatterers or features and 
the pixels surrounding them. Finally, the proposed method is 
being examined to prove its validity for other types of data. 
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