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ABSTRACT:

The most extensive use of Remote Sensing data is in land cover/land use (LCLU) studies by means of automated image
classification. The general objective of this research is to develop an automatic pixel-based classification methodology with the aim
to produce a Regional land use map congruent with the CORINE Land Cover legend. Starting point are detailed ground data, already
gathered fostering interoperability among several Regional bodies’ DBs and high resolution multi-spectral IKONOS imagery.
In the light of land mapping, there are two main features related to IKONOS imagery: lack of spectral information (4 spectral bands)
and high spectral variability (high spatial resolution). This results in problems in terms of class information extraction especially
using pixel-based image classification methods in which spatial information existing between a pixel and its neighbours is not used.
To overcome these deficits, the use of vegetation indexes (NDVI feature and TDVI masks) and texture (GLCM and edge-density
features) is investigated with respect to its impact on land cover/land use classification.
The developed spectral/textural classification schema is compared with the classical approach using only spectral information. An
accuracy assessment is carried out which shows that image data with 4 IKONOS spectral bands plus NDVI band plus 6 texture bands
achieve an accuracy of 80.01% compared to 63.44% of accuracy achieved by using the few spectral bands only. Furthermore it
allows the discrimination of 10 CLC classes.
Experimental results show how, starting from available but also binding data (IKONOS imagery and available Regional ground
data), a classification schema can be developed with enhanced performance and strong relation to the specific setup.

1. INTRODUCTION

This work is part of a wider project whose general objective is
an automatic pixel-based classification methodology aimed at
producing a regional CORINE Land Cover (CLC) land use
map. Starting points are high resolution multi-spectral IKONOS
imagery and ground data already gathered in previous works
(Marcheggiani et al., 2008). The images, provided by Marche
Region Institution, are mono-temporal (June 2006) and with
only 4 spectral bands. The ground data, owned by different
bodies of Marche Region public administration at regional
level, are large and detailed. Consequently the main goal of this
work is the development of a classification schema that can take
advantage of all the available data in Region’s possession
(IKONOS images and Ground data) to investigate the
possibility of a land cover mapping trustable enough to be a
permanent monitoring service of Marche region territory,
congruent with the land use oriented European trend (CLC
legend).
In the light of land mapping, there are two main features related
to IKONOS imagery: lack of spectral information and high
degree of spectral variation due to the high image spatial
resolution. This results in problems in terms of class
information extraction especially using pixel-based image
classification methods in which spatial information existing
between a pixel and its neighbours is not used. To overcome
these deficits and achieve reliable and accurate results, spectral
and texture information (GLCM and edge-density features) are
combined together in the proposed classification schema.

A fundamental goal of this research is in fact to explore the
image texture information and how to combine it with the
spectral signatures to do image analysis. Moreover the use of
vegetation indexes (NDVI feature and TDVI masks) is
investigated with respect to its impact on land cover/land use
(LCLU) classification.
The study case focuses on the north-eastern part of the Marche
region, belonging to the Ancona Province. It covers an area of
approximately 80 km2, comprising urban and rural landscape
and natural Mediterranean environment, among which the
Conero Mountain Natural Park have to be mentioned. Figure 1
gives an overview of the study image and its geographic
location.

Figure 1. Map of Italy and Marche Region (left), test image in
RGB and False Color composition (right).
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2. METHODOLOGY

The proposed classification schema is pointed out below in
Figure 2.

Figure 2. Workflow diagram describing the developed
classification schema

The input data are multi-spectral IKONOS images and available
ground samples gathered from different Information Systems
owned by Marche Region and organized in independent learn
and control samples. They are organized in 29 LC classes
according to their cover type and they mostly differ from the
CLC land use oriented nomenclatures. This means that, to
match the CLC legend, they must be grouped together
according to their use (agriculture, settlement etc.) that often
doesn’t fit their spectral response, making the supervised
training process difficult. In this context another objective of
this research is to investigate the best way to combine the 29 LC
classes into CLC nomenclatures.
Vegetation indexes are investigated with different purpose:
NDVI to generate an additional band and TDVI to build binary
masks trough which three supervised classifications are carried
out independently.
Texture features can be generated after having chosen the
spectral bands to process and set the window size parameter
(semivariogram/correlogram-guided texture feature generation).
In particular 28 different texture features are generated
according to two different texture approaches (GLCM and edge-
density features). By means of Standardized PCA these 28
texture features are reduced or selected according to their
loading factor, augmented by the four spectral bands and the
NDVI feature and grouped into three different feature sets that
differ only in the texture subset selection (IKONOS RGBNiR +
NDVI + texture). According to the Jeffries-Matusita (J-M)
average separability distance the best suited feature set can be
chosen. It is used to refine the training data and to run the three
TDVI masked supervised classification. A post processing step
is needed to match the CLC legend and improve the spatial
consistency of the pixel-based classification.
Hereafter the different steps shown in Figure 2 are explained in
more details.

2.1 Semivariogram/correlogram-guided texture feature
generation

Texture features could be theoretically calculated for each
spectral band and for many window sizes but with the

disadvantage of increasing the feature space dimensionality and
redundancy. Some choices must be made.

2.1.1 Spectral band analysis

 AIM: to minimize feature space dimensionality
by selecting optimal channels for texture measures.

 RESULT: Red and NiR bands are selected.
They show highest variances for the different land covers
and low correlation.

The following strategy to select the best band combination is
chosen. The 29 LC classes samples are downgraded in 5 main
cover classes and used as masks to compute covariance
matrices. According to the different 5 LC main classes, the Red
and the NiR band always correspond to the highest variances
which indicate strongest texture features. Moreover they show
low correlation.

2.1.2 Geostatistical correlogram/semivariogram analysis

 AIM: to investigate the optimum window size to
use to generate texture features

 RESULT: 3x3,5x5 and 7x7 window sizes for
the Red band, 3x3 and 5x5 for the NiR band

Semivariograms and Moran’s I correlograms of all the 29 LC
land cover classes are sequentially computed for lag distances
increasing to 20 pixels. The radiometric spatial autocorrelation
of the each particular LC class can be quantified in terms of the
lag (range) that results in the maximum variability (sill) for the
semivariogram and at the same time in a very close to zero
Moran's I value. An example is displayed in Figure 3 and is
related to one of the 29 LC classes (class 40305, Sparsely
vegetated areas).

RED band NIR band

Figure 3. Red and NIR Semivariogram/Correlogram plots

Having a look to all the 29 pairs of LC class variograms and
correlograms, they indicate that semivariances for Red band
mostly start to saturate at a lag of 5 while some classes require 3
and 7 pixels of kernel size. Instead in the NiR band each land
cover class reveal spatial correlation for lag distance of less than
5 pixels. Consequently 3x3, 5x5 and 7x7 are used as window
sizes for the GLCM computation from the Red band, and two
window sizes (3x3 and 5x5) are used to create NiR co-
occurence features. The same window sizes are taken into
account for the edge density image generation.
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2.1.3 Texture feature generation

 AIM: generation of optimal texture features to
add to the originals multispectral bands, before running the
classification.

 RESULT: 20 GLCM features + 8 edge-density
features = 28 texture features generated.

Two different kinds of texture are generated: Grey Level Co-
occurrence (GLCM) and edge-density features.
GLCM texture generation: As suggested by Hall-Beyer (2000)
a combination of only four GLCM measures (Haralick, 1973)
are selected to avoid that texture features are correlated with
each other. In particular mean (MEAN), Variance (VAR),
Entropy (ENT) and Homogeneity (HOM) are computed for the
Red and NiR bands and five window size (respectively 3x3, 5x5
and 7x7 for the Red band and 3x3 and 5x5 for the NiR band)
leading up to the generation of 4 x 5= 20 GLCM features. For
reducing the degrees of freedom of the GLCM texture
generation, the distance between pixels for the co-occurrence
matrix computations is maintained constant at one and the
average of the four main inter-pixel angles (0°, 45°, 90° and
135°) is used, based on the assumption that no land cover
exhibits a preferential directionality. The gray scale quantization
levels is set to 64: it allows to have a better computational and
statistical performance and reduce processing time limiting the
size of the co-occurence matrix to 64 x 64 (instead of 2048 x
2048 because of the radiometric resolution of 11 bit).
Edge-density texture generation: As done before, edge density
maps are produced processing the Red and NiR bands. Firstly,
each band is filtered using a Laplacian high pass filter;
secondly, edges are found by thresholding the filtered image
based on histogram interpretation. Finally, an average filter is
used to produce the edge density map, counting the edge points
in each position of the moving kernel and dividing the number
of edge points by the window size. Two different thresholds for
the Laplacian filter are selected interactively for each band (TR1

andTR2, TNiR1 and TNiR2) and 9x9 and 15x15 are used as average
filter’s window sizes. 4 x 2 = 8 edge-density images are
generated from the Red and NiR bands.

2.2 Texture selection

Before adding the collected 28 texture features as additional
bands to the IKONOS imagery, they are investigated and sorted
according to the standardized Principal Component Analysis
(SPCA) with the aim to extract optimum linear combinations
(Principal Components) of the original texture features that
contain as much as possible variability of the original data.

2.2.1 Standardized Principal Component Analysis
(SPCA)

 AIM: to reduce the generated texture features to
the maximum number of uncorrelated data

 RESULT: 3 different feature sets are
constructed:

 1st Feature set : 4 GLCM PCs + 4 spectral bands
+ 1 NDVI

 2nd Feature set: 6 GLCM&edge PCs + 4
spectral bands + 1 NDVI

 3rd Feature set: 12 high “loading” features + 4
spectral bands + 1 NDVI

Assuming that the original texture features are more or less
equally important, the problem to tackle is that the 28 texture
variables have very different means and/or standard deviations.
In this case a normalization is needed to avoid the importance of

a variable being determined its variance that could dominate the
whole covariance matrix and hence all the eigenvalues and
eigenvectors. This standardization is done by running the
Standardized PCA (SPCA) that equalizes dissimilar variations
in the data set by using a correlation matrix instead of a
covariance matrix (PCA). In particular the SPCA is performed
two times (to the 20 GLCM features first and then to the 28
GLCM&edge features) to construct three different feature sets
that later on must be investigated and selected before going on
with the maximum likelihood classification process.
Compromising three different selection guidelines (cumulative
percentage, Scree plot and Kaiser's rule), the first four GLCM
PC bands and six GLCM&edge PC bands are selected along
with the original four spectral bands and the NDVI band to
build the 1st and the 2nd feature set (to the amount of 9 and
11bands).Then, based on computed component loadings, the
band combination (12 GLCM&edge bands) that have higher
variance explained on various PCs is selected and added to the
other 5 features (spectral bands and NDVI) to build the 3rd

feature set (to the amount of 17 bands).

In order to guarantee that each source (spectrum, texture and
NDVI) makes the same contribution to the feature space and
avoid scale effects in the Maximum Likelihood statistic
computation, each source of data is stretched from 0 to 1before
running the classification schema.

2.2.2 Separability analysis

 AIM: to select the best suited feature set
assessing class separability and expected classification
errors for different feature combinations.

 RESULT: the second feature set (GLCM&edge)
is selected because it corresponds to higher average
separability of LC classes.

Average separability measures between each LC class are
calculated using the three different built feature sets that include
the 4 original image channels, the NDVI and different texture
subsets (GLCM, GLCM&edge-density and “Loading”features).
So, first, the pairwise J-M distances between each pair of
classes is determined for all combinations of two, then the
average J-M distance is computed for each class.
Figure 4 represents the average separabilities of the 29 LC
classes as function of the average J-M distance.
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Figure 4. J-M Average separability for L3 cover classes

As shown in Figure 4, the second feature set (PCs from GLCM
& edge-density features) is the best feature combination in order
to separate the given LC classes because it shows mostly higher
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values for the average J-M distances. The separability of
clusters generated using multispectral bands in combination
with the selected texture images, has improved especially for
agricultural areas and some forest and semi-natural classes.
Without texture the average J-M distance is often below 1.9 that
is the threshold below which the separability is indicated to be
poor.

2.3 Training set refinement (ROI)

 AIM: to improve ROI’s representativeness.

 RESULT: class signatures are “cleaned” using
the selected 2nd feature set and redefined as final ROIs.

Outlying pixels (in feature space) are deleted before computing
the final class signatures. This can be done by self-classifying
the training pixels according to the 2nd feature set. Misclassified
pixels are excluded from the training set recalculating the final
ROI (Region Of Interest) signatures only according to the well
classified training pixels. In the Figure 5 is shown an example
(class 40202) to summarize the “cleaning” workflow.

Original sample Self-classified sample “Cleaned” sample
(ROI)

Figure 5. Class 40202 cleaning and ROI generation

Which kind of texture should be taken into account to improve
the accuracyThe improvement in the training data can also be
checked again in terms of statistical J-M separability: before the
“cleaning” a lot of critical J-M distances (lower than 1.9)
indicate classes non well separated with some overlaps in their
density functions. Improvements are instead shown after the
refinement: the number of critical class pairs decreases from 40
to 22 (highlighted in pink in Figure 6). Looking more closely at
this J-M matrix (Figure 6), it is possible to investigate which LC
classes are still not sufficiently separated in the given feature
space and how to manage them. When the non separable LC
class pairs belong to the same CLC class (level 1 or 2), it is not
really a problem: according to the final CLC nomenclature, they
be merged after the classification into more generalized CLC
classes. Problems remain when it is not possible because the
“critical” classes differ in the CLC level 1 itself. It is for

example the case of the class 40305 (sparsely vegetated areas)
not separable from the class 10308 (mix coverage buildings)
even if belonging to different CLC level 1 class: Forest and
semi-natural areas the former, Artificial surfaces the latter.
An expedient to overcome this problem is the use of vegetation
indices.

2.4 Vegetation Indices

 AIM: to improve the classification accuracy and
minimize the error matrix off-diagonal elements.

 RESULT: two vegetation indexes are generated:
 NDVI to use as additional band in the selected feature

set
 TDVI to build three masks trough which run three

supervised classifications.

TDVI (Bannari et al. 2002) is employed to develop thresholds
useful to build binary masks (Figure 8) trough which three
supervised classification processes are carried out
independently.
Studying the TDVI histograms associated with the more critical
classes, two thresholds (T1=-1.2 and T2=-0.6) are developed
with the aim to identify pixels likely to belong to particular
classes. For example in Figure 8 it is shown how T2 can help to
distinguish the mix coverage building class with value mostly
below T2 from the sparsely vegetated areas class with value
mostly above T2.

T2

T2

Figure 7. TDVI Histogram thresholding

Figure 6. J-M separability class pairs distances after ROI “cleaning”

29 29
CLASS 10101 10203 10204 10205 10306 10307 10308 10309 20101 20102 20203 20204 20205 20206 20207 20208 20309 30101 30102 30203 30205 30206 30307 40101 40202 40203 40204 40305 50303 CLASS

10101 10101

10203 2.00 10203

10204 2.00 2.00 10204

10205 2.00 2.00 2.00 10205

10306 1.99 2.00 2.00 2.00 10306

10307 1.99 2.00 2.00 2.00 1.76 10307

10308 1.98 2.00 2.00 2.00 1.87 1.98 10308

10309 2.00 2.00 2.00 2.00 1.89 2.00 1.66 10309

20101 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 20101

20102 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.85 20102

20203 1.99 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.92 1.89 20203

20204 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.92 1.92 2.00 20204

20205 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.94 1.97 1.90 2.00 20205

20206 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.98 1.98 1.99 1.89 1.97 20206

20207 1.99 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.93 2.00 1.80 2.00 1.99 2.00 20207

20208 2.00 2.00 2.00 2.00 2.00 2.00 1.99 2.00 1.99 2.00 1.90 2.00 1.95 1.99 1.94 20208

20309 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.95 2.00 1.99 2.00 1.79 1.80 20309

30101 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.98 2.00 2.00 2.00 30101

30102 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.99 2.00 1.99 2.00 2.00 2.00 2.00 30102

30203 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 30203

30205 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.99 2.00 1.99 2.00 1.95 2.00 2.00 2.00 1.81 2.00 1.94 30205

30206 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.98 2.00 1.96 1.99 1.80 2.00 2.00 2.00 1.99 1.93 1.68 1.69 30206

30307 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.98 2.00 1.96 2.00 2.00 2.00 1.79 2.00 2.00 1.69 1.98 30307

40101 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.99 2.00 1.94 2.00 2.00 2.00 1.99 2.00 2.00 1.99 1.98 1.98 40101

40202 1.97 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.91 2.00 2.00 2.00 1.88 1.83 1.57 2.00 2.00 2.00 2.00 2.00 2.00 2.00 40202

40203 2.00 1.98 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 40203

40204 2.00 1.97 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.98 40204

40305 2.00 2.00 2.00 2.00 2.00 2.00 1.87 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 40305

50303 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 50303
CLASS 10101 10203 10204 10205 10306 10307 10308 10309 20101 20102 20203 20204 20205 20206 20207 20208 20309 30101 30102 30203 30205 30206 30307 40101 40202 40203 40204 40305 50303 CLASS

J-M values < 1.9, different CLC level 1 class

L3 : Jeffries-Matusita separability class pairs considering the whole set of 11 bands (4 spectral + 6 PCs texture bands+ 1 NDVI)

J-M values < 1.9, same CLC level 2 class J-M values < 1.9, different CLC level 2 class

Forest and semi-natural areas

Agricultural areas

Artificial surfaces

Water bodies
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TDVI < -1.2 -1.2 < TDVI < -0.6

TDVI > -0.6 RGB composition

Figure 8. TDVI masks and RGB composition

After having defined the two thresholds, it is possible to study
all the 29 TDVI class histograms to decide which sample use as
ROI in each specific classification process. With these three
ROI subsets three complementary Maximum Likelihood (ML)
classification can be carried out independently.

2.5 Supervised classification

 AIM: to classify each pixel into one of the 29
LC classes.

 RESULT: merging of three complementary
classification maps.

The three ML classifications are initially performed by default
assuming that all the cover classes are equally likely. Then they
are adjusted using a-priori information gathered by means of a
ROC (Receiver operating characteristic) analysis linked to the
LC ground data. By means of ROC curves is possible to
visualize the performance of the classification method, in order
to select proper decision thresholds providing the best
classification with the minimum error rate. This ROC analysis
is performed for each classification (3 times) and for all the ROI
involved with the wise to take into account only the ground
information allowed by the specific mask used. This a-prior
information can give a crucial effect to classification results. In
this way the ground data give again a powerful hint to drive the
classification schema development.
After having performed the three ML classifications, the three
outputs are merged into a single classified map by means of
raster calculations.

2.6 Post- classification data manipulation

 AIM: to match the CLC legend and improve the
spatial consistency of the pixel-based classification.

 RESULT: final CLC land cover map

The merged classified image is post-processed combining the
29 LC classes into10 generalized classes, according to the
CORINE Land Cover nomenclature.
Finally post-classification techniques (majority analysis, sieving
and clumpling) are applied to the CLC classified output in order

to eliminate the ‘salt and pepper’ noise, removing gaps within
areas covered by a predominant class.

3. RESULTS

In Figure 9 the performance of the developed spectral/textural
classification schema is assessed drawing a comparison between
the results obtained using only the spectral band and the
improved results achieved integrating texture features (without
and with the use of the TDVI mask).

without TDVI masks with TDVI masks

Prod. Acc. Prod. Acc. Prod. Acc.
Code DESCRIPTION (Percent) (Percent) (Percent)

1.1 Urban Fabric 98.61 97.19 96.02

1.2 Industrial, commercial and transport units 39.45 60.21 73.95

2.1.1 Non-irrigated arable land 47.33 81.32 77.3

2.2 Permanent crops 30.29 64.25 68.25

2.3 Pastures 94.29 74.77 74.71

3.1 Forest 93.06 97.11 96.02

3.2 Scrub and/or herbaceous vegetation assoociations 62.06 91.21 88.19

3.3 Open spaces with little or no vegetation (beaches,dunes,bare rocks) 39.22 48.64 64.99

3.3.3 Sparsely vegetated areas 91.95 94.85 88.63

5.2 Marine waters 100 97.17 99.01

Code Overall Accuracy (Percent) 63.44 74.38 80.07

SPECTRAL
SPECTRAL + TEXTURE

Corine Land Cover Legend

Figure 9. Accuracy comparison (spectral versus.
spectral+texture features)

Comparing the spectral and spectral/texture classifications in
Figure 9, it is clear that spectral classification is better suited for
those land use classes with a specific spectral response and well
differentiated from the rest of the units, such as pastures (class
2.3) and marine waters (class 5.2). The distribution of grey
levels in these two classes is very homogeneous, so they are
more difficult to discriminate by texture methods. Rather,
adding texture, their accuracy get worse. On the other hand,
texture techniques are very efficient in classifying landscape
units that contain a high spectral heterogeneity, such as
permanent crops, scrub and/or herbaceous vegetation
associations and non-irrigated arable land (class 2.1). These
classes are not very accurate when classified using the spectral
band only. For example, taking texture measures into account
(without TDVI masks) the accuracy of the permanent crop is
really improved (from 30.29% to 64.25%).
Similar explanation can be given for the industrial, commercial
and transport units: the high edge density encountered in
industrial area (class 1.2) allow to separate them from the other
classes and especially from the open spaces with little or no
vegetation (class 3.3) that were shown to be very spectrally
similar. Regarding these two class an additional improvement is
given by the mask use: class 1.2 can even reach an accuracy of
73.95%. while class 3.3 , although improving, still does not
reach a satisfactory accuracy. This verifies the use of TDVI
masks in the classification schema. However for this last class
(class 3.3) problems can be caused above all by a bad training.
In fact, having a close look at the particular samples generating
the signature, for this class it is clear that they are mostly made
up of beaches (very few samples for the other LC classes
grouped into this class 3.3) and especially spectrally “mixed”
beaches, as they can be in June in Italy because of beach
umbrella and so on.
Another interesting aspect is that the integration of spectral and
texture bands for classification has a synergic effect on the
results, in some cases even improving the accuracy of both
groups of classes (homogeneous and not). However, it is
important to note that , according to the truth data available, the
reported results refer to the inner truth areas of the texture units
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and not to the borders between textures. Further work should be
done to reduce the border effect.
A visual inspection of the final CLC map (Figure 10) confirms
that the results of this developed classification schema are
reasonably good. However an object-based post classification
method is advisable.

Figure 10. Final Corine Land Cover map with legend

4. CONCLUSION

The research shows how is possible to recycle and get benefit
from large and detailed available ground information taking
advantage from the IKONOS imagery and the potentiality
offered today by remote sensing techniques.
To get satisfactory results it is necessary to develop a supervised
classification schema integrating texture features.
The study confirms the utility of textural analysis to enhance the
per-pixel classification accuracy. In particular it shows how is
possible to extract texture features using second order GLCM
statistics and edge-density images and how, after a targeted
feature selection by means of the PCA, is possible to use them
as additional bands in the classification schema. These new
textures turn out to be useful auxiliary data especially for high
resolution data sets suffering from high spectral heterogeneity.
By incorporating these texture features in the classification
schema, it is possible to achieve a higher classification accuracy
compared to the classification of the original IKONOS image.
Particular improvements are shown especially in discriminating
between agricultural species and semi-natural areas (e.g. open
space with little or no vegetation). In particular permanent crops

are impossible to discriminate without texture from the other
classes
The overall accuracy increases to 80.0 % with a Kappa
Coefficient of 0.7337 and the Producer’s accuracies for the
different classes increase as well.
Important to underline is that the use of texture features makes
it possible to well-identify more CLC classes (10 CLC classes
in the study case): thus it is fair to think that, increasing the
amount of information extracted from the image, it is possible
to reduce the support given by the photointerpreter in CLC map
generation.
This work demonstrates the need of a spectral/textural image
analysis for a more accurate land cover type discrimination
when thematic classes are very heterogeneous (high within-
class spectral variance) and spectral information is no longer a
sufficient indicator for the classification.
Anyway no general rules can be recommended by this study for
the texture measure selection: the most appropriate combination
of texture features depends strongly on the surface properties of
the land cover types of interest. What is found by this research
is to optimize the window size according to the available ground
data and also to choose the best feature set in terms of
separability analysis (linked again to the collected ground data).
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