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ABSTRACT: 
 
Many researchers have reported comparisons between the error propagation properties of direct orientation and indirect orientation 
(aerial triangulation using ground control points).  The results of these comparisons have shown that direct orientation has the 
potential for use in projects requiring all but the highest accuracy.  However, all of these empirical comparisons are specific to the 
particular configuration of the image block and sensor systems and do not provide an explicit analytical comparison of the general 
case.  In this paper, we present an analytical comparison of the ground point precision obtained from direct and indirect orientation 
methods within the framework of a block-bundle adjustment in a stochastically constrained Gauss-Markov Model. 
 
 

1. INTRODUCTION 
Accurate and reliable sensor orientation is a pre-requisite for 
virtually all digital photogrammetric products including 
georeferenced orthoimages, digital terrain models and 
(increasingly common) three-dimensional models of man-made 
surface features.  Until very recently analytical aerial 
triangulation (AT) was the most common method of sensor 
orientation.  Modern methods of AT rely upon the bundle block 
adjustment, in which possibly large numbers of tie points are – 
often automatically via correlation or least-squares matching – 
measured across two or more images and used to estimate the 
six orientation parameters of each image in the block.  Ground 
control points are integrated into the adjustment as weighted 
observations and provide datum information to accurately geo-
reference the block.  As Heipke et al. (2002) and others have 
remarked, AT is particularly advantageous because the control 
information resides near the ground features of interest and is 
therefore largely an interpolation problem.  Exterior orientation 
parameters can be considered nuisance parameters. In fact, AT 
is often considered a ground control densification process**.   

Not long after the Global Positioning System became 
operational, differential positioning technologies enabled the 
direct observation of camera exposure centers.  The flexible 
bundle adjustment allowed these additional observations to be 
seamlessly integrated as weighted observations into the AT 
solution.  This reduced, but did not eliminate, the need for 
ground control points for datum definition*** and 
georeferencing.  However, tie points were still required for the 
estimation of the rotation matrix from each camera frame to the 
model frame.  

In the late 1990’s, Inertial Measurement Systems (IMU’s) made 
it possible to directly observe a sensor’s orientation relative to 
the ground.  Direct observation of the exterior orientation using 
integrated GPS and IMU systems now allow sensor orientation 
without manual or automated measurement of either tie points 
or ground control points – albeit with potential reliability issues 
because of the lack of redundancy.   Many of the original 
researchers – among them Skaloud and Schwarz (1998), Toth 
(1998), Burman (1999), Colomina (1999), Grejner-Brzezinska 
(1999), and Cramer et al. (2000) – demonstrated ground 
accuracies at the decimeter level without ground control.  
However, unlike AT solutions in which ground control points 
provided georeferencing information, these solutions involved 
extrapolation of control at the sensor to the ground.  
Furthermore, because the orientation parameters were no longer 
nuisance parameters, their correlation with each other and fixed 
interior orientation parameters could not be used 
advantageously by the adjustment to compensate for poor or 
variable calibration. 

The extrapolation and reliability problems lead to the inclusion 
of all observations, GPS/IMU, ground control points and tie 
points into the bundle adjustment in a process popularly known 
as integrated sensor orientation, or ISO.  In particular, as 
reported by Heipke et al. (2002), ISO may be used to more 
accurately estimate IMU boresight and GPS phase center offsets 
in a calibration step, but is also useful in a traditional AT role.  
In fact, the OEEPE Integrated Sensor Orientation tests (Heipke 
et al., 2002b) demonstrated mean deviations from independent 
check points of ± (5-10) cm in planimetry and ± (10-15) cm in 
height at a 1:5000 image scale.  This compared to same-block 
accuracies from the AT solution of ± (2.0-2.8) cm in planimetry 
and ±3.2 cm in height.  This, and other more recent experiences, 
clearly demonstrate that direct orientation, while inferior to 
more labor intensive AT in this case, is sufficient for many 
lower accuracy projects.  At scales of 1:10,000 results showed a 
similar planimetric accuracy but ±7 cm height accuracy 
compared to ± (3 – 13.4) cm planimetric accuracy in the direct 
orientation solution.  The wide range of results is due in part to 
the different system calibration parameters and adjustment 
coordinate frames.  
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The 2002 OEEPE tests were flown with a dual-frequency GPS 
receiver and very high quality IMU (Heipke et al., 2002).  The 
tests do not, and were not intended to, shed light on the 
capability of other integrated sensor systems. With the variety 
of GPS/IMU configurations available, from low-cost systems to 
exceedingly capable and expensive systems (cf. Mostafa and 
Hutton, 2005), the need exists for an analytic relationship 
among the three orientation solutions – direct orientation, 
indirect orientation with ground control points, and integrated 
sensor orientation.  The analytic solution should provide insight 
into the precision required of a pure direct orientation solution 
(with a boresight-calibrated GPS/IMU system) to achieve 
ground coordinate precisions equal to a similarly configured 
indirect AT solution.  In this paper we derive inequalities within 
the framework of a constrained block bundle adjustment.  While 
we do not address ISO explicitly (as did Habib and Schenk, 
2002, though using a different approach), the developed 
framework is suitable for this orientation method as well.  
Section 2 describes the partitioned bundle block model 
constrained by pseudo-observations on the parameters (also 
known as “stochastic constraints”).  Section 3 describes how 
orientation constraints enter the normal equations and affect 
parameter estimates.  These results are then demonstrated at 
different image scales in Section 4 using a simulated numerical 
example.  We discuss possible extensions to the analytical 
relationships in Section 5. 

2.  THE PARTITIONED BUNDLE BLOCK MODEL 

The bundle block adjustment is the standard for 
photogrammetric aerial triangulation because of its 
comprehensive solution and flexibility.  Observations consist of 
image tie-point measurements, independent ground control 
point measurements (2 image measurements per point and up to 
3 ground coordinate measurements) and the direct observation 
of exterior orientation parameters with GPS/IMU 
measurements.  If, at first, we only consider observations in the 
form of image measurements of ground control and tie points, 
an appropriate stochastic model for the linearized bundle block 
adjustment (unless additional distortion terms are carried as 
parameters) is the Gauss-Markov Model (GMM), 

2 1 ,         e ~ ( , )oξ σ −= +y A e 0 P ,                                            (1) 

in which  

• y is a n x 1 random vector of incremental changes to image 
coordinate observations,  

• A is an n x m non-random design matrix of rank q = m - 7, 
representing the Jacobian matrix of the observation 
equations with respect to the unknown parameters thereby 
defining a local differential relationship between 
parameters and observations, 

• ξ is the m x 1 non-random incremental parameter vector of 
the linearized observation equations and 

• e is the n x 1 random error vector with first and second 
moments given. The weight matrix P is usually treated as a 
known value (typically it is assumed to be the identity 
matrix unless image point measurements are of different 
precision), and the variance component (or reference 
variance) 2

oσ   is considered as the scale factor for the 

variance of the image point measurements.  If 2
oσ is chosen 

to be 1 a priori, then the full observation covariance 
information is contained in 1−P .   

Note that in the absence of geo-referencing information from 
ground control points (i.e. indirect orientation) or direct 
observations of exterior orientation (i.e. direct orientation), A is 
rank-deficient and the multiple solutions for ξ represent the 
multiple coordinate frames in which the block can be 
positioned. 

To reduce the computational requirements for solving large 
photogrammetric blocks, it is common practice to partition 
design matrices to achieve a particular sparse block-diagonal 
configuration (cf. Kraus, 1993).  We follow this practice 
because it will later facilitate comparison between direct and 
indirect orientation, and partition the Gauss-Markov Model as 
follows: 

2 1
1 1 2 2 3 3    ,     ~ ( , )oξ ξ ξ σ −= + + +y A A A e e 0 P ,                   (2) 

in which 

• A1 is a n x (6 * number of   photos) matrix containing 
partial derivatives with respect to the exterior orientation 
parameters, and 1ξ  contains the incremental changes to the 
initial approximations of exterior orientation parameters; 

• A2  is a n x (3 * number of gcp points) matrix containing 
partial derivatives with respect to the three coordinates 
(X,Y,Z) of the potential ground control points, and 

2ξ contains the incremental changes to the initial 
approximations of ground coordinates; 

• A3 is a n x (3 * number of tie points) matrix containing the 
partial derivatives of the  image coordinate observations 
with respect to the three ground coordinates of the tie 
points, and 3ξ  contains the incremental changes to the 
initial approximations of tie-point ground coordinates.  
Check points could be incorporated into this partition as 
well. 
 

Absolute orientation information may enter the model through 
stochastic constraints on 1ξ  (direct orientation), 2ξ   (indirect 
orientation), or both.  The stochastic constraints required for 
direct orientation: 

( )2 1
1 1 1 1 1               ~ , oz ξ e e 0 Pσ −= + ,                                      (3) 

provide additional information about the exterior orientation 
elements.  Note that we use the same variance component as in 
(2) which may, for 2 1oσ = , imply that the full GPS/IMU 

observation covariance is contained in 1
1
−P .  Likewise the 

stochastic constraints required by indirect orientation 
(observation of ground control points): 

( )2 1
2 2 2 2 2                 ~ , oz ξ e e 0 Pσ −= + ,                                 (4) 

provide additional information about ground control point 
coordinates in 2ξ .  
 
Since the quality of the triangulation is evaluated by the 
precision (and accuracy) of points on the ground, one measure 
of the relative quality achieved by each orientation method may 
be evaluated by the post-adjustment covariance matrix, Q3, of 
the estimated tie-point coordinates in 3ξ .  In the next section we 
explicitly express this covariance matrix in terms of both P1 and 
P2. We assume that tie points are measured automatically in the 
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direct method (but with no control points measured) and in the 
indirect method (with measured control points).  A2 and A3 are 
therefore invariant with respect to the method of georeferencing 
(and thus to the added stochastic constraints).  Furthermore, in 
the direct method, the ground coordinate parameters contained 
in 2ξ are treated as unknowns (i.e. as tie points). 

3. CONSTRAINED NORMAL EQUATIONS OF THE 
PARTITIONED MODEL 

The partitioned rank-deficient normal equations for (2) are 
obtained as 

111 12 13 1

21 22 22

31 33 33

ξN N N c
N N 0 ξ c
N 0 N cξ

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

$

$

$

                                              (5) 

with , ,T T
ij i i jN c A P A y⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦ , and may be augmented with (3) 

to provide absolute orientation information through direct 
orientation 

111 1 12 13 1 1 1

21 22 22

31 33 33
0

ξN P N N c P z
N N 0 ξ c
N N cξ

⎡ ⎤+ +⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

$

$

$

,                            (6) 

or augmented with (4) to provide absolute orientation 
information via indirect orientation 

111 12 13 1

21 22 2 2 2 22

31 33 33

ξN N N c
N N P 0 ξ c P z
N 0 N cξ

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥+ = +⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

$

$

$

                           (7) 

Note that the zero blocks in the normal equations (5)-(7) 
indicate that no observation equations contain both tie and 
control point coordinates. This is strictly true only in the 
absence of additional observations in the form of, for example, 
known distances between a tie and control point. In both cases 
the addition of sufficient stochastic constraints resolves the 
rank-deficiency of the normal equations in (5).  However, the 
precision with which the coordinate estimates of the tie-points, 

3ξ̂ , are determined depends upon the structure of the normal 
equations. Again, since we are concerned with the precision of 
the ground coordinates in the triangulation, we will examine the 
effects of (6) versus (7) on the dispersion of 3ξ̂ .  The covariance 
matrix (or cofactor matrix, if we do not use the a-priori value 
for the variance component) of all adjusted parameters is 
contained in a generalized inverse of the normal equations 
matrix. It can be shown that a reflexive, symmetric generalized 
inverse of the normal matrix in (5) is given by 

11 12 13

21 22

31 33
1 1

12 22 13 33
1 1 1 1 1 1

22 21 22 22 21 12 22 22 21 13 33
1 1 1 1 1 1

33 31 33 31 12 22 33 33 31 13 33

N N N
N N 0
N 0 N

S S N N S N N

N N S N N N S N N N N S N N

N N S N N S N N N N N S N N

−

− − − − −

− − − − − − − − −

− − − − − − − − −

⎡ ⎤
⎢ ⎥ =⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤− −
⎢ ⎥
⎢ ⎥− +
⎢ ⎥
− +⎢ ⎥⎣ ⎦

                                                                                                 (8) 

with 1 1
11 12 22 21 13 33 31S N N N N N N N− −= − − . Here −S  denotes any 

reflexive, symmetric g-inverse of S (Magnus and Neudecker, 
1999, pg. 12).  The lower right block is the covariance matrix of 
the tie-point coordinate estimates and, thus, the matrix that the 
users would like to see minimized.  The pseudo-observations, 
whether from direct or indirect information, affect Q3 through 
S.  If geo-referencing information is provided directly through 
calibrated GPS/IMU observations, the pseudo-observations in 
(6) create the, now full-rank, matrix 

1 1 1
1 11 1 12 22 21 13 33 31S N P N N N N N N− − −= + − −                             (9) 

instead of S, and we may write the tie-point cofactor matrix in 
terms of the inverse of S1 as 

(1) 1 1 1 1
3 33 33 31 1 13 33Q N N N S N N− − − −= + .                                        (10) 

The superscript (1) is used to indicate that the tie point 
coordinate estimates are obtained via the direct method.  
Alternatively, if the georeferencing information is provided 
indirectly, through ground control points only, the pseudo-
observations in (7) create the full-rank matrix 

( ) 1 1
2 11 12 22 2 21 13 33 31S N N N P N N N N− −= − + − .                  (11) 

  The covariance matrix of the tie-point coordinates achieved 
through indirect orientation may thus be written as 

(2) 1 1 1 1
3 33 33 31 2 13 33Q N N N S N N− − − −= +                                          (12) 

In this case the superscript (2) indicates that the estimates were 
obtained via the indirect method.  Now we are ready to 
analytically relate the tie-point precision to the orientation 
information contained in P1 or P2, respectively.  
If (1) (2)

3 3 Q Q≤ , then direct orientation leads to a better tie-
point precision than indirect orientation; for details of this 
comparison see Marshall and Olkin (1979).  From (10) and (12) 
we see that this inequality holds if and only if 1 2S S≥ .  This is 
to be expected since from (8) we know that the inverses of S1 
and S2 are the respective covariance matrices of the exterior 
orientation elements if constrained by direct and indirect 
observations, respectively.  By substituting (9) and (11) into this 
inequality it can be shown (see Appendix A for details) that 

( ) 1(1) (2) 1 1 1 1
3 3 1 12 22 22 2 22 21Q Q P N N N P N N

−− − − −≤ ⇔ ≥ + .         (13) 

This expression provides us with a measure to determine the 
weight matrix (or the covariance matrix) of the direct stochastic 
constraints that is required to achieve, at least, the same 
precision as an indirect adjustment with a given ground control 
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configuration (which is contained in 22N and 12N ) and precision 
(contained in P2).  Continued manipulation of (13) can likewise 
isolate P2 , leading to the equivalence 

( )

(1) (2)
3 3

111 1 1
21 11 12 21 11 1 11 21

2 22 22
1

21 11 21 22            

Q Q

N N N N N P N N
P N N

N N N N

−−− − −

−

≤ ⇔

⎛ ⎞⋅⎜ ⎟≤ ⎜ ⎟⎜ ⎟⋅ −⎝ ⎠

.         (14) 

The inequalities (13) and (14) are satisfied when direct 
orientation provides uniformly higher precision estimates of the 
tie point coordinates.  It is important to note that the tie point 
configuration, which is assumed to be invariant between the two 
geo-referencing methods, does not affect the comparison.  
Therefore, these inequalities also hold for any number of tie 
points included in the adjustment. Furthermore, ground point 
coordinates computed by intersection apart from the bundle 
adjustment (as in DEM generation and feature extraction) 
benefit from the chosen orientation method quite similarly to tie 
points used in the adjustment.  This is true because S1 and S2 
(the weight matrices of the estimated exterior orientation 
parameters) are used directly in the estimation of the precision 
of subsequent ground points. Also, we assume that the image 
coordinates of the ground control points are included in the 
adjustment, regardless of the orientation method, and simply 
serve as additional tie points in the direct method if they appear 
in multiple images.  

More details about the matrix inequalities used throughout the 
preceding analysis can be found in Appendix B.  In the next 
section we use the key results (13) and (14) in an example 
involving simulated fifty-six-image aerial blocks at two 
different scales. 

4.  COMPARISON IN A SIMULATED BLOCK: AN 
EXAMPLE 

To demonstrate how the analysis above might be practically 
used, we consider two blocks, each composed of four strips of 
seven images each.  One block is to be acquired at a scale of 
1:4,800, the other at a sale of 1:24,000.  Details of each block 
are given in Table 1 and the network configuration is shown in 
Figure 2. The ground control points for both blocks are assumed 
to be collected with GPS techniques yielding a horizontal 
coordinate variance of 0.0025 m2 and a vertical coordinate 
variance of 0.0225 m2 with (assumed) zero correlation among 
the coordinates.  Also, the exposure center coordinates and 
orientation parameters are assumed to be observed with 
GPS/IMU devices yielding coordinate variances of 0.01 m2 in 
the horizontal and 0.09 m2 in the vertical, again without 
correlation.  Orientation angles can be observed with a variance 
of 0.0001 degrees2 in omega and phi, 0.01 degrees2 in kappa 
with zero correlation.  These variances reflect results achieved 
from calibrated systems (Heipke et al., 2002). 

Block Over 
–lap 
(%) 

 Side-
lap 
(%) 

B/H 
Ratio 

Focal 
Len. 
(mm) 

Format 
(mm) 

1:4,800 60 30 % 1:1.6 150  235 x 235 
1:24,000 60  30 % 1:1.6 150 235 x 235 

Table 1. Acquisition parameters of the simulated block. 

 

Figure 2. Configuration of the simulated block.  Ground points 
used as control are shown in red. 

A simulated trial consists of an aerial image block generated 
from the “true” values of both exterior orientation and ground 
points (both tie and control) as follows: 

Direct orientation, simulated dataset: 

1. Image point coordinates (x,y) are generated by perturbing 
the “true” values (generated by the collinearity equations 
using the “true” values of exterior orientation and ground 
points) with normally distributed random errors with a 
standard deviation of ±0.005 mm. 

2. Initial estimates of the exterior orientation parameters are 
generated by perturbing the “true” values with normally 
distributed random errors with a standard deviation 
consistent with the assumptions in the preceding 
paragraph. 

3. Initial estimates of the ground point coordinates (including 
ground control points) are intersected using the image 
coordinates developed in the first step and the exterior 
orientation values developed in the second step. 

4. Pseudo-observations are added to the exterior orientation 
parameters per equation(3). 

 

Indirect orientation, simulated dataset: 

1. Image point coordinates (x,y) are generated as in the direct 
case. 

2. Ground control point coordinates are perturbed with 
normally distributed random errors with a standard 
deviation consistent with the assumptions in the preceding 
paragraph. 

3. Initial estimates for the horizontal coordinates of the 
exposure station are generated by solving a two-
dimensional similarity transform between image 
coordinates and ground control points (2 in each image of 
the block).  Exposure station Z-coordinate is assigned the 
flying height.  The orientation angles phi and omega are 
assumed to be zero, kappa is assumed zero degrees in 
strips 1 and 3 and 180 degrees in strips 2 and 4. 

4. Initial estimates of the tie points are intersected using the 
image coordinates developed in step one and the exterior 
orientation parameters developed in step 3. 

5. Pseudo-observations are added to the ground control points 
per equation (4). 
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These results show that networks of a larger scale tend to yield 
comparable accuracies between the two orientation procedures, 
although horizontal accuracy appears to improve substantially 
with indirect orientation.  The results also confirm our 
expectations that, as the photo scale decreases, both accuracy 
and precision are more drastically improved by indirect 
orientation procedures as compared to direct orientation 
procedures.   Note that in both blocks the difference between 
the horizontal accuracies is somewhat larger than the difference 
between the vertical accuracies. 

 Direct 
(±m) 

Indirect 
(±m) 

Direct 
(±m) 

Indirect 
(±m) 

Horz 
RMS 0.18 0.09 0.48 0.16 

Total 
RMS 0.27 0.26 0.69 0.31 

|ΔX| 0.13 0.06 0.28 0.10 

 |ΔY| 0.10 0.05 0.33 0.11 

 |ΔZ| 0.23 0.17 0.43 0.24 

3σX 0.33 0.21 1.03 0.49 

3σY 0.33 0.21 1.12 0.47 

3σZ 0.68 0.61 1.70 1.16 
Table 3. Mean tie point coordinate results of 100 trials.  RMS 
values compare estimated tie point coordinates with their “true” 
values.  Sigma values are derived from variances propagated 
through the orientation adjustment. 

From the point of view of the network designer, equation (13) 
is most useful in that it tells what modifications to the direct 
observations of the exterior orientation parameters are required 
to achieve the precision of the indirect method.  We, therefore, 
consider the normal equations formed from the “design” values 
of the tie points, ground control points, and exterior orientation 
used to generate the simulations.  The matrix norms of the 
partitioned normal equations and pseudo-observation weight 
matrices are shown in Table 3.   Note that from these 
measurements we may determine the decrease of variance of 
each parameter estimate (the entries in the diagonal matrix P1) 
required to achieve precisions equal to orientation with ground 
control points with variances reflected in P2.   According to row 
3 in Table 3, the exterior orientation parameters would have to 
be observed with, on average, 1.9 times higher precision in the 
1:4,800 scale block, and with 5.4 times higher precision in the 
1:24,000 scale block. 

Although each trial is developed from the same true values, 
each is unique due to the added random perturbations.  Both the 
direct and indirect trials are consistent with standard operational 
procedures for providing initial approximations.  The mean 
results of 100 trials are detailed in Table 3.   All RMS values 
are considered accuracy measures in that they show mean 
deviations from the “true” values.  The sigma values are 
propagated errors form the orientation procedures. 

Partitioned 
matrices (eq.14) 

Frobenius Norm 
1:4,800 

Frobenius Norm 
1:24,000 

P1 92.8 x 106 92.8 x 106 
Eq. 13 338.0 x 106 2688.0 x 106 

P2 283 283 
Eq. 14 4690 493 

Table 4.  Matrix norms of the partitioned matrices. 

 1:4,800 1:24,000 
Frobenius Norm P1 9.2x107 9.2x107 

Frobenius Norm 
RHS (14) 3.37x108 2.687 x109 

P1 scaling required  3.640 28.945 
Direct Observation 
Variance Decrease 
Factor 

0.275 0.0345 

Table 5.  Scaling of the weight matrix for direct orientation 
required to achieve a precision equal to the indirect method  

5. CONCLUSIONS AND OUTLOOK 

The framework developed in this paper has been used to derive 
an analytic relationship between two differently constrained 
bundle adjustments – direct and indirect – and is a step towards 
a more general method to compare various weighting methods 
for bundle adjustments.  The framework may also be extended 
to include 1) the ISO method and 2) and integrated LiDAR 
observations, thereby following similar lines as Burman (2000) 
and Csanyi and Toth (2007). 
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APPENDIX A. DERIVATION OF COVARIANCE 
RELATIONS 

For the direct method to achieve equivalent or better ground 
point accuracies, 1 2S S≥ .  Using expressions (13) and (14) 
then 

( )

1 1
11 1 12 22 21 13 33 31

1 1
11 12 22 2 21 13 33 31

N P N N N N N N

N N N P N N N N

− −

− −

+ − − ≥

− + −
  

must hold with respect to the precision of the competing 
orientation methods. We may obviously eliminate the term 
containing tie-point information because it is invariant with 
respect to the orientation method and obtain     
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( )

( )
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If 21N has full-row rank, then we may further rearrange the 
expression to obtain the following equivalent statements 
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leading finally to 
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APPENDIX B. MATRIX NORMS AND LÖWNER’S 
PARTIAL ORDERING OF MATRICES 

Given two matrices of equal size, G and H, a partial ordering 
according to Löwner (cf. Marshall and Olkin,1979) can be 
defined through G H> if and only if G – H is positive-
definite, or slightly more generally, G H≥ if and only if  G – H 
is positive-semi-definite.  In the case that G itself is positive-
definite and H is, at least, positive-semi-definite, we may 
conclude G H≥ if and only if the maximum eigenvalue of the 
positive-semi-definite matrix 1−G H is less than one.  

A justification for this is related to the relative size of a 
quadratic function of the two matrices.  For details see Caspary 
(1987).  Instead of comparing the matrices themselves, we may 
compare certain scalar-valued functions of them; for instance, 
the trace of G with the trace of H.  Another possibility is the 
(weighted-) Frobenius norm, defined as ( )2 T

w
tr=G G WG  for 

some positive-definite matrix, W.  For ≡W I , this norm is 
equal to the sum of squared eigenvalues of G and can be 
thought of as a measure of the “hyper-volume” of the positive 
semi-definite matrix G.   The weighted Frobenius norm 
provides a simple composite measure that can be used to scale 

the norm of G to that of H.  For example, if 1w

w
r

G
H

= ≤  then 

by this measure at least, G is “smaller” than H by a factor of r. 
r may be applied as a scale factor to the norm of G 

then, ( ) ( ) ( )T T Tr tr tr r r trG G G G G G= =  so that the 

norm of matrix G is now equal to that of H. 
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