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ABSTRACT:

Since the advent of high-resolution satellite sensors the pansharpening of multispectral data using the higher spatial information of
the panchromatic channel became a prominent topic in the data fusion community. Besides the development of new algorithms also
the evaluation of approaches has been addressed in recent years leading e.g. to competitions as by IGARSS (Alparone et al., 2007)
using visual inspection and quantitative measures for quality assessment. (Zhang, 2008) questioned the significance of such quantitative
measures to evaluate the impact of pansharpening on subsequent processing like classification using an example based on linearly trans-
formed data. This was the motivation for our investigations addressing the question, if quantitative evaluation criteria for pansharpening

can reflect its impact on subsequent processing.

1. INTRODUCTION

The question addressed in this contribution is, if quantitative qual-
ity measures for pansharpening evaluation really indicate the qual-
ity of the data as input for subsequent processing like classifica-
tion and its impact on the quality of the results of this processing.
Fusion of multispectral data with data of higher geometric reso-
lution has been already addressed for a long time. Nonetheless
with the advent of high resolution satellite sensors like IKONOS
and QuickBird a variety of different approaches based also on
quite different techniques (c.f. (Zhang, 2004)) has been proposed
taking also sensor characteristics into account in order to improve
the results of pansharpening and thereby facing tightened require-
ments on the spectral consistency of the pansharpened multispec-
tral data. As a consequence of both developments quality assess-
ment has also been addressed since some years which led to the
proposal of a number of quality measures and competitions of
pansharpening approaches as e.g. by IGARSS (c.f. (Alparone et
al., 2007)) combining visual / qualitative and quantitative evalu-
ation. First the quantitative measures based on a comparison of
the original and pansharpened multispectral data took mainly the
spectral consistency into account. Recent developments consider
not only the spectral consistency, but also the information con-
tent transferred from the panchromatic to the pansharpened mul-
tispectral data (c.f. (Alparone et al., 2006)). (Zhang, 2008) ques-
tioned the significance of such quantitative measures — focussing
on the spectral consistency — with respect to the impact of the
pansharpening on the results of subsequent processing using as
example linearly transformed data and clustering: Although the
clustering leads to the same results, the quantity Q4 (Alparone et
al., 2004) used for quality assessment differs. In this case these
differences for Q4 are due to different signal means and variances
caused by the linear transformations, whereas the clustering is not
sensitive and thereby the results are not influenced by these trans-
formations. Nonetheless other subsequent processing and classi-
fication algorithms may be sensitive to distortions caused by the
pansharpening.

The discussion above is the motivation of our recent investiga-
tions. We used simple pansharpening approaches — simple with
respect to their concept and their implementation within tool-
boxes of image processing and remote sensing software packages
— shortly outlined in the following section. Quantitative measures
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to evaluate the quality of the obtained pansharpened data are pre-
sented and discussed in Section 3. The pansharpened data sets
are then used for clustering and feature extraction. Based on the
results, the impact of pansharpening on clustering and feature ex-
traction is shown and evaluated in Section 4. followed by conclu-
sions and an outlook.

2. PANSHARPENING APPROACHES

Simple pansharpening approaches like Brovey or principal com-
ponent analysis (PCA)-based approaches sufter from the fact that
the following two conditions

Chan o »_w;C; (1)
J

with Cpar denoting the panchromatic channel, C'; a multispectral
channel and wyj its weight and

Cpan XX Csub (2)

with C,p the channel to be substituted and high correlation be-
tween the two channels is required, but not met. The first condi-
tion (1) is valid for sensor systems like QuickBird and is of impor-
tance for arithmetic combinations like Brovey on one hand and
frequency-based algorithms on the other. This condition is e.g.
used by used by (Kalpoma and Kudoh, 2007) and (Aiazzi et al.,
2007). From (1) also follows the existence of a linear transform
to map the panchromatic channel to the weighed sum. An exam-
ple for such a linear transformation is histogram matching based
on the means and the standard deviations of the signals. The sec-
ond condition (2) is required for approaches based on component
substitution by the high-resolution channel: the component to be
substituted and the panchromatic channel have to be similar.

In (Weidner and Centeno, 2009) we investigated four approaches
with respect to their capability to maintain spectral consistency.
The first approach is an adapted Brovey transformation (BROV)
taking into account the different spectral bandwidths of the chan-
nels to compute a weighed intensity channel as a lower resolution
approximation of the high resolution panchromatic channel and
performing a linear transformation based on histogram matching
between these before the arithmetic combination. The second
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approach investigated is a PCA-based approach based on substi-
tution. This approach was mainly included as a kind of reference
in order to show the limitations of PCA-based approaches and to
derive an approach based on an orthogonal transformation. The
idea of this third approach (ORTHO) is to define a linear combi-
nation of the multispectral channels according to the conditions
stated above for the channel to be substituted, thus defining the
first row of the transformation matrix. The other rows are con-
structed in such a way that the rows constitute an orthogonal ba-
sis. The fourth approach is based on linear filter, namely Laplace
and is thereby frequency-based (PANSHLPL). Details on the im-
plementations of these approaches can be found in (Weidner and
Centeno, 2009).

3. QUANTITATIVE EVALUATION APPROACHES

(Wang and Bovik, 2002) proposed the index defined by

4-0AB-pA-UB
(0% +0o8)(uh + 1)

3

PWB =
ranging from 0 to 1 to measure the similarity between two one-
channel gray-valued images. p4 and pp denote the means, o2

and ¢% the variances and o4 the covariance of the images. It

can be rewritten to
0AB  2-pa-pp  2:04-0B
oaoB P4 +pL o4 +o0d

C)

PWB =

in order to clarify the parameters. Each criterion has been used in
a number of publications on pansharpening evaluation, but they
are now combined. A detailed discussion of terms and how (4)
can also be used within pansharpening is given in (Weidner and
Centeno, 2009). In a first step (Alparone et al., 2004) generalised
the index of (Wang and Bovik, 2002). This generalised index Q4
is applied in (Alparone et al., 2007) besides two other measures
- SAM and ERGAS. Their generalisation is based on the use of
quaternions and thereby restricted to evaluate results of images
with n = 4 channels. We therefore propose to generalise the
index of (Wang and Bovik, 2002) by

s — 4»tr(EAB)'|ﬁA|‘|ﬁB| (5)
VET (w(Da) + w(S) (1, " + %)

where tr denotes the trace of a matrix, p N the vector of mean

values of data set A, |u | the length of the vector, ¥4 the co-
variance matrix of A, aﬁg > ap the covariance matrix of the data
sets to be compared. Instead of the quantity 4, (5) is not re-
stricted to four channels. In order to overcome the restriction of
dimension and to also include the information content of the pan-
sharpened multispectral channels in the quality assessment, (Al-
parone et al., 2006) proposed a new index QNR which consists of
two terms. The first term is based on the quality index of (Wang
and Bovik, 2002) comparing the multispectral original and pan-
sharpened data and added for all channels, the second is based on
similarity measure between multispectral and panchromatic data
in a high resolution and low resolution version. In our investiga-
tion we will use a different approach motivated by (Xydeas and
Petrovic, 2000) to measure the information content of the pan-
sharpened image, namely the correlation of gradient information.
For this purpose first a weighed mean of the multispectral data
according to (1) is computed followed by computing the gradient
absolute values of the weighed mean of the multispectral chan-
nels and the panchromatic channel and their correlation p3 lead-
ing to the quantity

ar = qwePv (6)
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Figure 3: Subset RIVER - original data

as a combined quantity to evaluate spectral consistency and infor-
mation content. We prefer this quantity, because the gradient in-
formation forms the basis for point / feature extraction and should
therefore be closely related to results of these algorithms.

4. SETUP OF INVESTIGATIONS AND RESULTS

Our investigations relating quantitative quality measures for pan-
sharpening with the impact of pansharpening on subsequent pro-
cessing of remote sensing data is based on a number of subsets
from a QuickBird scene. Results for three subsets are discussed in
more detail. These subsets constitute of an urban area (URBAN,
Fig. 1), a mixed area with a sewage plant and forest (FOREST,
Fig. 2) and an area with a larger river bed (RIVER, Fig. 3).
The first subset provides a variety of different surface covers in-
cluding man-made structures. The other subsets are selected for
their simplicity on one hand, but also for their spectral properties
— namely the homogeneous forest and water areas — on the other
hand.



In: Wagner W., Székely, B. (eds.): ISPRS TC VII Symposium — 100 Years ISPRS, Vienna, Austria, July 5-7, 2010, IAPRS, Vol. XXXVIII, Part 7A

Contents Author Index Keyword Index
* * *
URBAN Layer 9wB49WB pv qr
BROV 1 0,877 0,920 0,807
2 0,918 0,931 0,855
3 0,953 0,896 0,854
4 0,952 0,906 0,862
Mean 0,925 0,913 0,844
Matrix 0,939 0,857
SAM 0,469
PCA 1 0,691 0,995 0,687
2 0,700 0,998 0,698
3 0,703 0,994 0,699
4 0,990 0,572 0,567
Mean 0,771 0,890 0,663
Matrix 0,855 0,761
SAM 5,167
ORTHO 1 0,900 0,936 0,842
2 0,966 0,906 0,875
3 0,960 0,916 0,880
4 0,934 0,953 0,891
Mean 0,940 0,928 0,872
Matrix 0,944 0,876
SAM 1,468
PANSHLPL 1 0,933 0,883 0,824
2 0,956 0,886 0,847
3 0,975 0,850 0,828
4 0,976 0,835 0,815
Mean 0,960 0,863 0,829
Matrix 0,968 0,836
SAM 0,000
* * *
FOREST Layer qw B, 9w B v qr
BROV 1 0,872 0,892 0,777
2 0,920 0,893 0,821
3 0,963 0,827 0,796
4 0,966 0,907 0,876
Mean 0,930 0,879 0,818
Matrix 0,957 0,841
SAM 0,677
PCA 1 0,377 0,996 0,376
2 0,426 0,997 0,424
3 0,385 0,996 0,384
4 0,954 0,418 0,399
Mean 0,536 0,852 0,396
Matrix 0,759 0,647
SAM 10,979
ORTHO 1 0,878 0,921 0,809
2 0,958 0,899 0,861
3 0,959 0,893 0,856
4 0,964 0,951 0,917
Mean 0,940 0,916 0,860
Matrix 0,959 0,879
SAM 1,165
PANSHLPL 1 0,921 0,862 0,794
2 0,953 0,858 0,818
3 0,978 0,793 0,776
4 0,984 0,836 0,823
Mean 0,959 0,837 0,803
Matrix 0,977 0,818
SAM 0,000
* * *
RIVER Layer 9wBA4dwB v qr
BROV 1 0,847 0,885 0,749
2 0,903 0,892 0,805
3 0,963 0,798 0,768
4 0,989 0,958 0,947
Mean 0,925 0,883 0,817
Matrix 0,983 0,868
SAM 0,457
PCA 1 0,441 0,972 0,429
2 0,483 0,990 0,478
3 0,576 0,968 0,557
4 0,969 0,783 0,759
Mean 0,617 0,928 0,556
Matrix 0,938 0,871
SAM 3,938
ORTHO 1 0,856 0,916 0,784
2 0,945 0,912 0,862
3 0,939 0,904 0,849
4 0,989 0,970 0,959
Mean 0,932 0,925 0,863
Matrix 0,984 0,911
SAM 1,061
PANSHLPL 1 0,939 0,831 0,781
2 0,963 0,840 0,809 i
3 0,985 0,748 0,738 F .
4 0,99 0,901 0,897 " M i &
Mean 0,971 0,830 0,806 ORTHO PANSHLPL
Matrix 0,993 0,825
SAM 0,000

Table 4: Evaluation by quantitative measure
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Figure 6: Results for subset RIVER (section)




In: Wagner W., Székely, B. (eds.): ISPRS TC VII Symposium — 100 Years ISPRS, Vienna, Austria, July 5-7, 2010, IAPRS, Vol. XXXVIII, Part 7A

Contents Author Index Keyword Index

URBAN Entire

Overall Kappa
BROV 0,741 0,714
PCA 0,750 0,723
ORTHO 0,754 0,727
PANSHLPL 0,823 0,800

Homogeneous Non-homogeneous / edges

Overall Kappa Overall Kappa
BROV 0,830 0,804 0,668 0,642
PCA 0,824 0,797 0,670 0,644
ORTHO 0,837 0,811 0,663 0,636
PANSHLPL 0,909 0,892 0,729 0,704

Table 7: Comparison of clustering results URBAN

Tab. 4 compiles the quantitative indicators discussed in the pre-
vious section in sequence of the three subsets and the algorithms
described in Section 2.. The results are given for the four sin-
gle multispectral layers (B, G, R, NIR) numbered from 1 to 4
according to (3), the mean value of these results and the combi-
nation of the four channels using (5). The next column compiles
the correlation of corresponding Soobel gradient images and the
last column the results for ¢} according to (6). In this contribu-
tion the quantities are computed for the entire subsets. A distinc-
tion between homogeneous and non-homogeneous areas (edges)
is made in (Weidner and Centeno, 2009). The ranking of algo-
rithms keeps the same, but results are worse within edge regions.

Fig. 5 displays the original data and the results for a smaller sec-
tion — using a clipping of 5 % of each channels histogram — of
the subset URBAN. The quantities involved in (6) show only mi-
nor differences except PCA. For all algorithms the result for the
first channel (B) is minor to the other channels. A closer analysis
further indicates that those algorithms mainting spectral proper-
ties are minor in transferring the gradient information to the pan-
sharpened multispectral channels. This trade-off is not surprising
especially for simple algorithms as used here. Furthermore, those
algorithms performing a linear transformation work slightly bet-
ter than others taking the correlation of gradient information into
account. Nonetheless, the quantities indicate problems with the
PCA-based algorithm, which also could be verified by visual in-
spection. In fact the PCA-based algorithm turns out to perform
worst (c.f. Fig. 6) also for the two other selected subsets due
to their special characteristics and the data dependence of PCA
determining the transformation matrix. The difficulties for sin-
gle channels are disguised by the criterion based on the set of all
channels. The SAM criterion indicates that the fourth algorithm
based on linear filtering has no impact on SAM independent from
the data.

In the following we address the impact of pansharpening on two
possible processing steps, namely classification and point extrac-
tion. We selected these two processing steps, because classifica-
tion depends on the spectral properties and point extraction on the
information content given by the gradient information.

For unsupervised classification we selected k-means clustering
and 8 clusters for all subsets although the complexity of the sub-
sets is different. The clustering results for the different pansharp-
ing results are not identical concerning their ID and therefore
clusters are automatically assigned using the overall accuracy as
criterion. Clustering adopts for linear changes in feature space
and therefore linear spectral transformations do not have an in-
fluence on its result. For the comparison of the clustering results
using the pansharpened data of the first data set URBAN Tab. 7
compiles the overall accuracies and the « indices. The clustering
is performed on the entire data set, but for the analysis three cases
a discerned: entire data set, homogeneous and non-homogeneous
areas as in (Weidner and Centeno, 2009) for the quality mea-
sures applied therein. Within the homogeneous areas the results
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Figure 8: Subset URBAN clustering - BROV homogeneous areas

FOREST RIVER
Overall Kappa Overall Kappa
BROV 0,723 0,690 0,911 0,852
PCA 0,660 0,627 0,934 0,891
ORTHO 0,717 0,684 0,868 0,780
PANSHLPL 0,842 0,821 0,948 0,913

Table 9: Comparison of clustering results FOREST / RIVER (ho-
mogeneous areas)

of clustering should not differ, for edge regions differences have
to be expected. As an example the result of clustering based on
the pansharpened data by BROV within the homogeneous areas
is shown in Fig. 8. Although the overall visual impression for the
clustering results is almost the same, smaller deviations can be
observed which also lead to a lower overall accuracy taking the
clustering result of the original multispectral data as reference.
The ranking is the same for all three cases mentioned above tak-
ing the significance of differences between the overall accuracies
into account. Again the result for the edge regions are minor to
those of the homogeneous regions.

The results for the first data set are confirmed by the results of
the subset FOREST (c.f. Tab. 9). In case of the subset RIVER
however the ranking according the overall accuracy differs sig-
nificantly. The visual comparison of the data (c.f. Fig. 6 and Fig.
10 for the results of clustering) is in accordance with the quality
evaluation taking the single channels as basis, but is not appar-
ent neither by pjy 5 nor the overall accuracy. The value and / or
range of overall accuracies depend on the data and the class distri-
bution. The data set was selected to study homogeneous regions
(dominant cluster river) and their impact on the preprocessing for
pansharpening. Therefore not the absolute values but only the
rankings are of interest.

For the subset RIVER a test of the impact of pansharpening on
Maximum-Likelihood (ML) classification is accomplished. Com-
pared to the other data sets it comprises only few classes. Four
training areas for the river (Rhine), fields (bare soil), meadows
and forest — the most dominant classes — are defined in homo-
geneous areas. The first set of classifications used the spectral
signatures from the original multispectral data serving as spectral
library, the second set the spectral signatures from each data set.
Therefore the results of the first set are affected by linear changes,
but not those of the second set. All other parameter settings are
kept the same. Results are displayed in Fig. 11 showing only
a small section for better visualisation and statistics for the en-
tire subsets (homogeneous areas) are given Tab. 12. Except for
PCA the achieved overall accuracies are in the same range for
both settings. The deviations for PCA are caused by the spectral
distortions (c.f. Tab. 4) and are anticipated (c.f. Tab. 13 for the
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Figure 10: Clustering results for subset RIVER (section)

Bhattacharrya distances between the original spectral data and
those of the pansharpened for each training area).

In order to evaluate the impact of pansharpening algorithms on
point extraction the SIFT operator (Lowe, 2004) is selected in-
cluding also a matching of points across the data sets. The eval-
uation is based on the pansharpened multispectral data for which
a weighed mean according to (1) is computed. Point extraction
uses the panchromatic channel as reference and only those points
which are matched across all pansharpening results for a data set
are included in the analysis. The statistics in Tab. 14 are based on
about 260 points for the subset URBAN, 280 points for the subset
FOREST and 140 points for the subset RIVER. These points are
evenly distributed across the data sets except for the river which
also caused the lower number of matched points. Given are the

Spectral signature from original MS Overall Kappa

BROV 0,951 0,905
PCA 0,221 0,208
ORTHO 0,947 0,898
PANSHLPL 0,975 0,951
Spectral signature from each data set Overall Kappa

BROV 0,949 0,901
PCA 0,835 0,693
ORTHO 0,921 0,849
PANSHLPL 0,957 0,917

Table 12: Comparison ML-classification (homogeneous areas)

Rhine fields meadows forest
BROV 0,89 1,60 0,66 0,54
PCA 44,95 25,55 30,89 3,25
ORTHO 0,89 1,72 0,52 0,65
PANSHLPL 0,24 0,05 0,07 0,46

Table 13: Bhattacharrya distances
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Figure 11: ML-classification results for subset RIVER (section)
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URBAN mean ds | sigmads | median ds
MS (original data) 2,1 34,4 1,9
BROV 0,2 25 0,1
PCA 1,4 22,2 1,1
ORTHO 0,1 2,0 0,0
PANSHLPL 1,7 28,3 1,6
FOREST meands | sigmads | mediands
MS (original data) 1,9 32,0 1,8
BROV 0,3 4,9 0,1
PCA 1,7 28,3 1,4
ORTHO 0,3 5,1 0,1
PANSHLPL 1,6 27,2 1,5
RIVER meands | sigmads | median ds
MS (original data) 2,3 26,7 1,9
BROV 0,2 1,8 0,1
PCA 2,0 23,7 1,4
ORTHO 0,2 2,2 0,1
PANSHLPL 21 24,3 1,8

Table 14: Results of point matching (SIFT) [pizel]

mean point distances, their standard deviation and their median
for comparison. A low mean and median of point distances indi-
cate that the matched point of the pansharpened data are close to
the original positions derived from the high resolution panchro-
matic channel. If furthermore the standard deviation of the point
distances is low, most point positions are in agreement. The cor-
relations of the Sobel gradients given in Tab. 4 are almost in the
same range for all algorithms and data sets. For comparison the
original multispectral data is also included in Tab. 14. The corre-
lations for these unsharpened data sets are about 0.4 and therefore
the high values for the point deviations for the unsharpened data
sets and those of BROV and ORTHO are in agreement, but not
those of PCA and PANSHLPL. For the PANSHLPL result the
reason may be found in effects due to the unsharp masking lead-
ing to visual sharp, but deteriorated edge information. The PCA
and ORTHO algorithms are similar in the sense that they both
perform a linear transformation, nevertheless the spectral distor-
tions produced by the PCA algorithms cause problems within
matching and finally in the point positions. These results with re-
spect to its ranking are confirmed by recent preliminary results of
point extraction based on manual measurement and least squares
matching for point transfer.

5. CONCLUSIONS

Pansharpening and its evaluation using quantitative measures are
addressed by a large number of publications. Motivated by (Zhang,
2008) this contribution investigates to which extend such qual-
ity measures reflect the impact of pansharpening on subsequent
processing steps in remote sensing. For this purpose simple pan-
sharpening approaches are applied to QuickBird data. As exam-
ples for processing classification and point extraction are inves-
tigated. The quality measures used here evaluate mostly linear
spectral distortion and the degree of information transformation
from the high resolution panchromatic channel to the multispec-
tral channels, namely the gradient. Partly subsequent processing
steps are insensitive to linear transformations like clustering at
least within homogeneous regions. Nevertheless, problems occur
at edges. Therefore homogeneous and non-homogeneous regions
should be evaluated separately (c.f. (Perko, 2004) and (Weidner
and Centeno, 2009)). In most cases it could be demonstrated that
the quality indices for pansharpening evaluation are in agreement
with the quality of the processing results based on the pansharp-
ened data, but also cases are discussed where the quality measures
for the pansharpening results do not significantly differ, but the
results of the processing. The reason for this is the fact that pro-
cessing steps are influenced by effects of pansharpening which
can not entirely evaluated by a single quantity — although a com-
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bination of different criteria. Therefore, just one index seems to
be inappropriate. In addition specialised criteria with respect to
input data and processing steps should also be used like SAM for
hyperspectral data (Klonus and Ehlers, 2009). The results of our
investigations are based on a number of subsets. Therefore tests
will be performed on further data sets in order to form a wider
basis. Furthermore the impact on segmentation will be addressed
based on (Weidner, 2008).
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