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ABSTRACT:

In this paper, a damage assessment system of GIS-objettsasuoads and buildings after natural disasters is prebefitee main
contribution is the integration and exploitation of mukimporal imagery leading to a more robust assessment abindictural objects.
In addition, the chronological development of the asseeb@rtts is investigated. The multivariate alteration dié® method is used
to detect changes between different time points in conjonetith the classification of different changes realizeal @aussian mixture
models. Further accessorily introduced information améved from GIS, in particular DEM belief functions. The dtgy of the
proposed approach is the combination of the computed pildebusing individual appropriate methods. The goallt# system is
the assignment of GIS-objects into different damage ass#scategories as intact or not intact/destroyed usinfuses information
from multi-temporal multi-sensorial data. The system ied at a test scenario assessing roads concerning ttioatvdity. The
results show the improvement of the damage assessmennsyfter the integration of multi-temporal information.

1. INTRODUCTION In this article, a modular system is presented which is able t
deal with varying data sources and provides the embeddiaf of

In this paper, an assessment system of GIS-objects is peelsen available information.
using multi-sensorial and multi-temporal imagery aftetunal
disasters. The focus of this article is the multi-tempoiahe
ponent, because the integration of imagery from differamet
points into an assessment system has several advantagshy, Fi
multi-temporal images provide the opportunity to monitatuz
ral disaster chronologically during a period of time, nolyoat a
specific time point. Secondly, the assessment of the Gl8etdj
at the time point. can be improved using the results from time
point¢;.

In Section 2. existing up-to-date damage assessment sysiem
presented and categorizeddrea- andobject-based systemm
addition, data fusion techniques with regard to disasterage-
ment are discussed. Hereupon, the basics of Gaussian enixtur
model and a the change detection methods are introduceel sinc
these methods are key elements of the assessment systerh, whi
is described in Section 3. In Section 4. the general systap-is
plied to a test scenario, the shown results are evaluatezkoon

ing their quality measure. Finally, further investigatoand fu-

Another focus of this article is the automatic informatietrieval  ture work is pointed out.

from imagery being relevant for rescue teams after natusalsd

ters. Information on the status of the infrastructure afteasters > STATE OF THE ART AND BASICS
is essential to guarantee an effective and fast disasteagean '
ment. Therefore, the emphasis of this article is the devetoy
of automated methods assessing infrastructural objects asi
roads concerning their functionality.

2.1 Damage Assessment Systems

In case of natural disaster it is reasonable to differemti@tween
object-basedand area-baseddamage assessment systems. The
focus ofobject-based systenssthe assessment of infrastructural
objects such as roads or buildings concerning their funatity.

In recent years several systems have been developed éstjmat
the extent and type of destruction on various buildings. ddre-
age assessment was realized using different kind of sessohs

The precondition ensuring an effective disaster manageimen
the near-realtime supply of information, because time éscitu-
cial parameter. Therefore, great efforts have been madeder o
to speed up the workflow from satellite tracking and data stqu
tion to the point of map generation (Voigt et al., 2007). ThHele
workflow can generally be passed within 24 hours. Data analy e
sis consisting of information extraction, damage assessitree- as LIDAR (Rehor Et, al., 2008) or satellite 'mages (Chgsnel et
matic analysis and change detection plays a decisive rdleein "’_II" _2007)' But there ISa lack of meth_ods assessing tratesoor
processing chain of the workflow (Bamler et al., 2005). Up tOIlfellnes after natural disasters (Mpraln and Kraft, 2008)(Frey
now a lot of data analysis tasks are done manually which is ver@nd Butenuth, 2009) a near-realtime assessment systerads ro
time consuming. Therefore, automation is required to $uibst using GIS-obJectg_anc_i mult!-sensorlal data is prese_nthd_.rb?ad

the manual interpretation. The difficulty is the developteh objects are class!fled into different stgtes and are visedliising
methods minimizing wrong decisions to avoid fatal conseqas the ample paradigm proposed by Forstner (Férstner, 1996). |

in emergency actions. Possibilities to achieve a low eatw are this art|_cle, the system is (_extended by the mult-temposaipo-
semi-automated approaches. nent using change detection methods.

On the other handrea-based systeniscus on the affected re-
gions. Typical examples are the generation of flood masks de-
rived from different sensors. Besides optical imagerytipar
larly radar images are suitable for the extraction of intedar-

* Corresponding author. eas. Martinis (Martinis et al., 2009) uses a split-basedraatic

A given fact is the variability of available imagery and Gi&al
in case of emergency. For this reason, a basic charaatarfgtie
presented system is the handling of different input datacesu
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thresholding method to detect flooded areas from TerraSAR-XUsing CCA, the linear coefficientsandb are determined and the
data in near real-time. MAD variatesM; can be calculated (Nielsen et al., 1998):

22 Data fusion M, =U,—-V; fori=1...n. (3)

An extension to the MAD transformation is the iterative reyt-
In general, the performance of the damage assessment syatem ed MAD (IRMAD) method. Similar to boosting methods in data
be improved by adding additional imagery and data sourdes. T Mmining, an iteration schema focuses on observations whuesee
additional benefit depends on the way of how the data is comstatus is uncertain (Nielsen, 2007). Since the MAD or IRMAD
bined. Pohl (Pohl and Van Genderen, 1998) differentiateden  Variates can only being interpreted in a statistical marniere
three different levels of image fusion: pixel level, featlevel is a need to assign semantic meaning to the MAD variates. In
and decision level. The combination of different data sesyc Canty (Canty and Nielsen, 2006) an unsupervised classficat
e.g. vector and image data, was discussed in several othiei-co Method is proposed based on the MAD variates to cluster frixel
butions, e.g. (Butenuth et al., 2007). Particularly, ttegmation ~ ho-change and one or more change categories.
of GIS information combined with imagery improves the résul
and simplifies the decision makings enormously (Brivio et al 2.4 Combination of Probability Functions: Gaussian Mix-
2002). Wang (Wang et al., 2002) presents a method for map-  ture Model (GMM)
ping flood extend combining optical imagery and DEM. In the
approach, for each data source an individual flood mask is gersince the radiometric characteristics of infrastructotzgects of
e_rated. The final roo_d m_ask consists of the set union of thie ind the same type could vary strongly, single probability fioms
vidual masks. Considering the DEM as an image this approache not able to describe the complex scenes sufficientlyreFhe
belongs to the decision level image fusion as defined in (Pohfsre mixture models which combines single functions to aeno
and Van Genderen, 1998). The presented approach in this arfiomplex probability function are used. The resulting piuligy

cle combines imagery and DEM, too, to detect flooded areas. Ifnctionp(y|6;) is simply a weighted sum of the initial functions
contrast to the discussed approaches, the aim is the cotiolbina p(y0;):

based on probabilities derived from the input data.

k
p(yl0) = > a;p(yl0;). @)
2.3 Change Detection: Multivariate Alteration j=1

Detection (MAD) Each@; describes the set of parameters definingjthecompo-

nent, a1 ...a; are the weights called mixing probabilities and
Change detection algorithms are widely used investigatio@x- vy = [y1 ...ya]T represent one particular outcome of a d-dimen-
tent and damage of natural disasters. A comprehensiveweviesional random variablyf = [Y;...Yy]". If Y is normal dis-
about change detection methods is given in Lu (Lu et al., 2004 tributed, Gaussian are typically used. The mixing prolids
However, many methods are restricted to specific sensoracha have to fulfill following equations:
teristics. The efficient response in case of natural disestgiires
a change detection method which is able to deal with various k
sensors containing a different number of channels. Furthes, @; =20, j=1...k and Za;‘ =1 ®)
the influence of changing atmospheric conditions should ine m j=1
imized. The multivariate alteration detection method (MABD
invariant to linear transformations which implies the insigiv-
ity to linear atmospheric conditions or sensor calibratiahtwo
different times. In addition, the handling of different noens of
channels is given (Nielsen et al., 1998).

The expectation maximization (EM) algorithm is used to dete
mine «; and#;. A detailed description of mixture models can
be found in McLachlan (McLachlan and Peel, 2000). The min-
imum message length criterion (MML) is one possibility todfin
the number of centersand is used in our system (Figueiredo and

The MAD transformation is based on the canonical corratatio Jain, 2002).

analysis (CCA). The CCA investigates the intercorrelati@
tween two sets of variables unlike the principal componeiai-a 3 ASSESSMENT SYSTEM
ysis, which identifies patterns of relationship within oret ef
data. Letr = {F\, F%, ..., F\,} andG = {G1, G2, ..., G } be-

ing two images with n or m channe{s < m). A linear combi- N this Section, the general assessment system is presested
nation of the intensities for all channels leads to the famsed N9 Multi-sensorial multi-temporal imagery and furtheasable
imagesU andV: data. The goal is the assessment of GIS-objects categptizm

into different states.
U = aF
V = bG

arFi+asks+ ...+ ankFy
blGl + b2G2 + e + anG'm~

()

3.1 System

o ) ] The design of the system has a modular and very flexible struc-
The ggal of the transformation is to choose the linear caeffic e to cope with varying raw data being available in emergen
@ andb minimizing the correlation betwedd andV. This leads  cases (cf. Fig. 1). Nevertheless, there are some prertuisi
to the result that the difference image between the tramefdr  to apply the system. The GIS-objects which should be as$esse
imagesU andV will have maximum variance. Due to the fact concerning their functionality must be given. It is conedile to
that multiples ofU andV would have the same correlation a rea- extract the GIS-objects using imagery before the natuisdsdi

sonable constraintar(U) = 1 andvar(V') = 1is chosen: ter takes place or, alternatively, from a GIS. However, Ewbf
the performance of automatic extraction methods, objeois f
var(U—=V) = war(U) +var(V) — 2cov(U,V) a given GIS-database with a guaranteed quality are bettedsu
2(1 = cov(U, V)). (2)  The result of the assessed GIS-objects depends stronglyeon t
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Figure 1: General damage assessment system.

available input information. Besides the imagery, DEM amd f
ther GIS-information can be embedded into the system. Here,

this data is called input data.

For multispectral imagery Gaussian mixture models areiegpl

Belief functions are introduced to derive probabilitiesrr GIS-
information. If multi-temporal imagery are available charde-

tection methods such as the MAD algorithm are used to derive

probabilities. The combination of the different input dataar-
ried out in the probability level. All the individual methsdnd
the combination of the probabilities are realized at piggkl. In

motorway
‘ 0.25
path
o y

infrared

city road

country road

150
green

Figure 3: Two-dimensional probability density functioristioe

contrast, the subsequent assignment of GIS-objects toatiee ¢ Classes forest, water and separated road-classes (cityowan-

goriesintact, possibly intacor notintact/destroyedising a max-
imum likelihood estimation is object-based (cf. Fig. 1).

3.2 Methods and Combination of Probabilities

try road, path and motorway).
infrared and green channel.

Exemplarily visualized via th

For each input data individual methods have to be applie@+o d Additional GIS-information such as DEM is often availabke/h

rive individual probabilities if the infrastructural olujes are intact
or not (cf. Fig. 1). Given multispectral imagery as inputadat
multispectral classification is carried out. The infrastanal ob-
jects are classified to different classes relating to thegmates
intact, possibly intactand notintact/destroyed Since a lot of
classes like roads have no consistent radiometric chaistate

ing the opportunity to enhance the assessment system. Since
the combination of the input data is based on the probability
level, also from the GIS-information probabilities havebsde-
rived. Belief functions can be generated depending on ti& Gl
information. In Figure 5 an example is shown, which depibés t
probability that an object is flooded depending on the alétu

as shown in Figure 2 and Figure 3, GMM are used to deal withThe combination of the probabilities derived from the difiet

the different subgroups of the classes. The resulting fitties

from the mixture modep;., are combined with probabilities

from further input data (cf. Fig. 1).

The availability of images at different time points enakites us-

age of change detection methods exploiting additionakassent
criteria. The IRMAD algorithm enables the detection of aipem
caused by natural disasters. The resulting IRMAD-variates
classified using a supervised multispectral classificatior the

different change-classes, i.e. ’intagt destroyed’ probability
functions are generated. These probabilitigs s are embedded
into the assessment system.

images at time, (cf. Fig. 4(a)) and time. (cf. Fig. 4(b)). In

this example of a flood event the changed areas from flooded to

not flooded are illustrated in pink, the gray color standsrfor
change (cf. Fig. 4(c)).

45

In Figure 4(c) three IRMAD vari-
ates are shown as an RGB-color image obtained from IKONOS-

input data is defined as following (cf. Fig. 1):

Ps1 = Psq,img ® Psq,gis ®...0 Psy,mad
Psy = Psa,img ® Pso,gis ®...0 Psoy,mad

. (6)
Ps; = Ps;,img & Ps;,gis ®...Q Ps;,mad-

The probabilitiegp,, are the combined probabilities of one status
s;. Inthe easiest case the set of states couldtaetor not intact

But it is also possible to think of different kinds of desttioa
states. In addition, weights are introduced since the imétion
‘content of the different input data varies:

Ps; = W1Ps;,img ® W2Ps;,gis ®...® WdPs;,mad- (7)

The number of input data is denoted @sFinally, the object is
categorized to the state with the largest probability.
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(c) Three MAD-variates depicted as an RGB-color image

Figure 4: Change detection using MAD-algorithm.
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0 | ;
| a; Water Level  aj, Altitude

Figure 5: Belief functions depending on altitude: area isdied
(blue), area is not flooded (gray).
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4. RESULTS AND DISCUSSION

The presented damage assessment system is applied tofecspeci
flood scenario. In real case scenarios the availability pdiimlata

is the crucial factor. The derivation of the probabilitiggen in
Equation 6 is not always possible depending on the avaitiike

On the other side often additional information exist whick a
useful to generate additional rules. In real applicatibescombi-
nation of probabilities is embedded into a rule-based fraonk
which can differ from case to case.

4.1 Test Scenario

Test scenario is the flooding of the river Elbe (Germany) & th
year 2002. The available input data for the damage assessmen
system consists of two IKONOS-scenes (cf. Fig. 4(a) and)4(b)
acquired at the 21th and 26th of August, and a DEM. The peak
of the water level was measured at the 19th of August. Theescen
at the timet; shows almost the maximum inundated area. In the
second scene at time the flooding receded strongly and only
a small area is covered by water (cf. Fig. 4(b), top right). In
addition to the images, a DEM is available with a 10m x 10m
grid with an geometric accuracy of +/- 1m. In this test scenar
road objects given from a GIS-database are assessed cioigcern
their trafficability.

4.2 Workflow of Rule-based Classification

A detailed workflow of the rule-based assessment systentis de
picted in Figure 6, the input data are illustrated by grayapar
lelograms. Below these parallelograms the derived prditiabi
from the input data are attached in gray rectangles. The ic@mb
tion of the probabilities is realized in the blue boxes. Thaldn

this scenario is the assessment of road segments concéineing
trafficability at timet». In addition to the imagery and the DEM
described in Section 4.1, the assessed road segments ah¢he t
t1 are given. They are obtained by means of the described as-
sessment system using very strict parameters. Altermgtaiso

a manual generated reference at titmeould be used. The as-
sessed road segments at time@nd additional information as the
water level lead to the rule-based framework built on the lmem
nation of the probabilities. The probability,., derived from the
imagery is partitioned into three different probabilitieonging

to a specific class: wat@tyater, 10adp,oad, fOrestpsorest. As
shown in Figure 3 the class road is subdivided into subctaske
roads using GMM. Using a maximum likelihood estimation fol-
lowed by a threshold operation the segment is categorized in
the three statesafficablg possibly floode@ndflooded

4.3 Evaluation

The obtained results are compared to a manually generdted re
erence. The information for the generation of the referaace
only the image at timé.. Therefore, it is not a comparison
with the real ground truth, but it is the comparison of the au-
tomatic approach with the manually interpretation of an hom
operator. The reference is also categorized into threerdif
classedrafficablg possibly floodedandflooded Since the cat-
egorization of the automatic system consists of the samessta
the following four different assignment criteria are detared:
‘correct assignment’, 'manual control necessary’, 'polyscor-
rect assignment’ and 'wrong assignment’. The categoryréatr
assignment’ means that the manually generated refereitznis
tical with the result of the automatic system. In the caserafti-

ual control necessary’ the automatic approach leads totéte s
possibly floodedvhereas the manual classification assigns the
line segments tdloodedor trafficable The other way around
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Figure 6: Workflow of Rule-based Classification.

denotes the expression 'possibly correct assignmentbrigas-
signment’ means that one result categorize the segméobuted
and the other tdrafficable The enhancement of the automatic
system by the combined interpretation is shown in Table 7.

| | to | t2,DEM | ti2,DEM | t12.,DEM ]

correct || 68.40 68.45 69.60 87.14
manual || 27.88 27.77 27.48 10.96
possibly || 2.64 2.72 2.52 1.79

wrong 1.08 1.06 0.40 0.11

Table 7: Evaluation (percentage shares)

The first column in Table 7 represents the result using ordy th !
imaget» without any further information. The result with about
1% of 'wrong assignements’ and about 68% 'correct assigtimen |
is almost identical if an additional DEM as input data is used - = o 3 o

(cf. Table 7:t,, DEM). The reason for the lack of improve- (c) Detail of evaluation using image, imaget; with correctly assessed
ment could be ascribed to the bad accuracy of the used DEM.O‘"‘ds and DEM
The influence of the height information is discussed in (fe§  Figure 8: Evaluation of assessment system: green='coa®ct
Butenuth, 2009). The evaluated road segments are depitted signment’, yellow="manual control necessary’, cyan="gibyy
Figure 8(a). Green road segments correspond to ‘correigrass correct assignment’, red="wrong assignment’[systennaffica-
ment’, yellow to ‘manual control necessary’, cyan to 'pbbsi  ple, reference flooded, dark blue = 'wrong assignment’ [sys-
correct assignment’ and red or blue belongs to 'wrong assignem =flooded reference rafficabld.

ment'. If the systems assigns a road segment to the catagdry

ficablebut the referencce iBoodedthe road segment is colored

inred. Blue road segments are assignefioindedby the system  ation is presented in the forth column of TabletY A p = ar).
andtrafficableby the reference. The results are by far better then the previous obtainedtsesu
The 'correct assignments’ arise from 69% to 87% and the "gron
assignments’ decrease from 0.4% to 0.1%. But it is impot@nt
point out, that a correct reference at the time poinhas to be
generated. Nevertheless, it has no influence of the facttieat
system is near-realtime since the time consuming genarafio
the reference can be done before.

In Figure 8(b) the result of the third column from Table 7 is vi
sualized which includes the additional scene at time pairats
input data. The additional scene and the resultant caemlifabb-
ability p.,.q.q derived from the described MAD method leads to an
improvements of the results. Several red road segmentspdiaa
whereas the ’'correct assignments’, the assignments touatan
control necessary’ and the 'possibly correct assignmeetsains

almost constant. 4.4 Result after Data Fusion

In Figure 8(c) the results exploiting an additional manugkn-  The final obtained result using the described damage aseessm
erated reference from scengeare plotted. The numerical eval- system is depicted in Figure 9. All road segments are divided
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Figure 9: Detail of result of damage assessment system aling
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