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ABSTRACT:

Since the exterior orientation elements of linexgar€CD images are highly correlated, normal colliimequations that computing

these elements are ill-posed and the error ofahstIsquare estimation is very large and the saoltirongly depends on the initial

value. For solving this problem, this paper putevird an algorithm to compute the exterior oriéntatelements based on

quaternion spherical linear interpolation. Firdtlg quaternion is used to describe the attitudbefmage, and then spherical linear
interpolation is used to gain the attitude of aimg lin this algorithm, lastly a model of exteriaiemtation elements is build and is
used in exterior orientation. Experimental resuitticated that the method could effectively overeotine correlation problems of

exterior orientation elements and the positioninguaacy is very high, and the reliability and slifpiof this algorithm are both

independent of the initial values of exterior ot&ion elements.

1. INTRODUCTION

Line-array CCD images have stable geometric atiedyuand it
is quite meaningful to investigate the techniquésobject

orientation and stereo plotting by CCD images. Haveline-

array CCD images have a projection centre for éacige line,

and the orientation parameters of traditional Iiiedion

collinear equation are highly correlated. Thus, ¢heations to
solve exterior orientation elements are greathpdsed. Least
Square (LS) solutions, which are dependent onrtiti@livalues

of exterior orientation elements, may have greairsr and the
precision of orientation and mapping is greatlyluahced

(Wang, 1979; Qian, et.al, 1991).

Numerous investigations have been done by resaaronethe
precise computing the exterior orientation elemeoftdine-
array CCD images, and many methods to solve ilegos
problems are proposed (Qian, et al, 1991; Krupi@QO;
Katiyar, et al.2003; Gupta, et al.1997), such adiray virtual
error equations, combining great correlation iteitesatively
solving the line and angle exterior orientation nedats
respectively, centralized criterion of coefficieahd so on.
Although the orientation precision is increased these
methods, the correlations and the ill-posed problefmnormal
equation are not solved. Consequently the precisioastricted.

coordinate system are not considered. This is treatest
advantage of these methods.

The ill-posed problems can be solved in two aspe@te is
choosing the appropriate calculation methods. Tthercone is
building appropriate math model. The above solgtigust

reduce the ill-posed problem from the calculatioetimods,
without solving this problem in essential. In ordersolve the
ill-posed problem perfectly, this paper tries taldha model of
exterior orientation elements using quaternion.g@inmage
space resection based on quaternion is firstlyietiuand tested
in Jiang’s (Jiang, 2007) and Wang's (Wang, 2007peps

Experimental results show that it can get corretit®ns under
a larger range of initial values than traditionalyw However,
frame photo is the research object in their paped their
methods are not suit for processing the line-a€@&p images.
Liu's (LIU, 2008) paper extends the method to thendie

adjustment of airborne three-line images, and kabes very
well. However, his method is not suit for procegssingle line-
array CCD images. So in this paper, when quaternsiaised to
describe the exterior orientation elements of thet find the
last scan line of a line-array CCD image, we gh&nduaternion
attitude elements of any scan line through the otetbf

quaternion spherical linear interpolation (SLERR)en we put
forward an algorithm of exterior orientation based the

Subsequently, some scholars put forward some biaseghaternion SLERP (called quaternion algorithm)last, we do

estimations (Guo, et al, 2003; Gui, et al. 2003;ng/aet
al.2005), for example ridge estimation (includingesial and
generalized ridge estimation), principal comporeerdlysis and
stein estimation. However, there are various litittes in these
biased estimations, and many works should be doimagrove
them. Moreover, for high resolution satellite CGBaiges (such
as IKONOS images), rational function model,
transformation method are investigated to objectsitipning
by many researchers (Okamoto, et al. 1999; Frasex, 2002;
Zhang, et al. 2004). For these methods, rigorowgegtion
relationships between image coordinate system awodngd

" Corresponding author.
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some exterior orientation experiments by this atgor.

The remainder of this paper is organized as folldwsSection
2, quaternion and quaternion spherical linear pakation are
briefly reviewed. Section 3 puts forward a SLERPdeloof
exterior orientation elements based on quaternamd an

affine algorithm of exterior orientation using the abovedal is given.

Experimental results and analysis are given in iSect.
Finally, Section 5 concludes the paper.
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2. QUATERNION SPHERICAL LINEAR
INTERPOLATION

2.1 Quaternion representation of rotation

A quaternion is an ultra-complex number which egpes as
d=qo +1iq1 + ja2 + kqs (Zhang,1997),where qo, q1,q2, a3
are real numbers arz, 7, k are so-called imaginary units whose
products follow the rulé® = j2 = k> = -1, jk=—kj =1,
ki=—1k=3,i = —jit=k. A quaternion also can be
written asg = qo + q, where the numbe;jy is called the real
part and the surq = iq1 + jq= + kgs is called imaginary part.
The vector form of quaterniong=[q ¢ ¢» ¢s3]*.The
conjugate of a quaternion ¢* = qo — 2q1 — jq2 — kqs.The
norm of a quaternion ||¢|| = v/4¢*.If thel|¢|| = 1, quaternion
gis called a unit quaternion.

The detailed discussion of quaternion is in Jiapgiper. Much

of that is not exited in this paper. The rotatioatrix which

using the quaternion can be gained from the produlet of

quaternion, the formula is as follow (JIANG,2007):

M =

@+a-a-a

2(q2q1 + qog3)
2(g3q1 — qoq2)

2(q193 + qog2)
I)'Z((]z(;l):s ~ do ) X
Q% —q1 — ¢+ a3
(1)

2= ).
G — ¢+ — g3
2(q293 + qo0q1)

When the order of the rotation axisy’ — X — Z, we can
obtain the Euler angl¢¢, w, ) from the above rotation matrix

through the following formula.
— M3

(» — t¢ -1

p =tan""( Mas )

w :tan_l(—lyfzg) 2
-1 Mo

K =tan (]Wz-z

2.2 Quaternion Spherical Linear Interpolation

When quaternion is used to describe the imageudgtitthe
spherical linear interpolation of quaternion catowl us to
smoothly interpolate between two image attitudd$)(12008).
The principle of quaternion spherical linear intdgtion is
illustrated in figure 1. Given two unit quaternicj:s. ¢» and
their inclination angleé, the unit quaterniog(¢) is on the arc
which connectewj; andg2, and the inclination angle (t) and
g1 isth. Soq(t) is given by:

q(t) = Ci(t)g1 + Ca(t) g2 3)
Where, C1(t),C2(t) are the coefficients, and is the
interpolative variable.
_ sin(1—1t)0 _ sintf
Ci(t) = © sinf Ca(t) = sin @)
6 = arccos(qi-g2)

arccos(qioqzo + q11g21 + q12q22 + q13¢23) (5)
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Figure 1. The outline of quaternion sphericaldine

interpolation

In this paper, we only give that how to obtain #xpression of
C1(t). From the geometry of figure 1, we can get twailsirity
triangles, so that.

Ci(t) Hq(z‘)H sin(1 — t)0
llqul B |1 sin @
g1 andq(t) are unit quaternion{|qi|| = Hq(t)H =1, so the we
can obtain:
sin(1 —t)0
Ci(t) = ———
1) sin 6

We can also obtain the expressiorCs(t) similarly.

Using formula (4) in equation (3), the SLERMction of
quaternion is given by

. sin(1 — t)6 . sintf .
q(t) ( ) a1+ 2

sin 6 gz

(6)

sin 0

If we look upon two unit quaterniorg; andg. as two points
on the surface of a 4D sphere, quaternion SLERR wil
interpolate around the shortest arc that connelgts ttvo
guaternions along the surface of the 4D sphere.

3. SOLUTION OF EXTERIOR ORIENTATION
ELEMENTS

3.1 SLERP model of exterior orientation elements

In this paper, the projection center (iXs:, Ysi, Zs;) in the
elements of exterior orientation is expressed bgedr
interpolation, and the unit quaternignis used to describe the
angular elements, the quaternion attitude of arandine is
obtained by using SLERP.

The image projection of line-array CCD image is timee
central projection, so the projection center ofnsdiae i is
given by:
Xsi=Xs + XSUq
Vsi = Vs + Ysy

Zsi = Zs + Zsyi
WhereXs;,Ysi, Zsi is the projection center of scan liijey;
is the measuregl coordinate of the scan lireXs,Ys, Zs is
the projection center of the centre line, :Xs,Ys, Zs are the
coeffifients of change in thg direction.

()

When quaternion is used to describe the exteri@ntation
elements of the first and the last scan line ahe-array CCD
image, the quaternion attitude of any scan line mambtained
by using SLERP.
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@i = Ci(t)q1 + C2(t) g2 8
Where ¢; is the quaternion attitude of any scan lig;2andg.
are the quaternion attitude of the first and th&t kcan line;
Ci(t), Ca(t) is given by formula (4).
Using the vector expression ¢;f ¢: andg. in formula (8),g; is
given by:

qio C1(t)qio + Ca2(t)g20
qn| _ Ci(t)q11 + Ca(t)g21 ©)
qi2 Ci(t)q12 + Ca(t)go
Qi3 C1(t)q13 + C2(t)qes
The interpolative variabl®is given by:
t:% (O0<t<l) (10)

Where 7 is the row number of the scan linzjs the total scan
line number of a view image.

3.2 Linearization of collinear equation with SLERP
model

In the error equation of exterior orientation basedjuaternion
SLERP model, the unknown elements aXsYs,Zs,Xs,Ys,
Zs,qlg,ql1,q12,qlg,qzo,q21,q22,q23). The following is about that
how to linearize the collinear equation based oatguion
SLERP model.

In the line-array CCD image, we assume ‘i€ known, and

(w0,y0) = (0,0). For any GCP, the coordinates are known,
dX =dY =dZ = 0. The linearization error equation is given

b X+ buadVes + kisdZs,

+ k14dgio + k15dgir + kiedgiz + ki17dgis — e (11)
vy =k21dXgi + ko2dYs; + kozdZs;

+ k24dqio + kesdqi1 + k2edgia + kardqis — 1y
Where

k11 = (anif + (137'1')/? ko1 = a‘zif/?
k12 = (biif + bSix)/% koo = bQif/%
kis = (crif +csix)/Z kos =caif/Z

ke =2(f +2°/f)qiz koa = —2(qir f + qizx)
kis = =2(f +2°/f)ais ko5 = 2(qiof + qine)

ke = —2(f +2°/f)qio k26 = —2(qisf + qirx)
kiz =2(f +2°/f)gin  kor = 2(qiaf + giox)
le=0v—2a' 2 =—-f(X/2)

ly=0-y v =-f(Y/2)

X =a1i(X — Xsi) +b1:(Y = Ys;) + c1:(Z — Zs3)
Y = a2:(X — Xsi) + b2:(Y — Ysi) + c2:(Z — Zsi)
Z = a3i(X — Xgi) + b3i(Y — Ysi) + ¢3(Z — Zsi)

ayi b cu
azi by e =

as;i b3 csi

Go+ah - ¢ — dis 2gingi = qiogis) - 2angis + qiodiz)
2Aqiogin + Gioti3) o — ¢i1 + G2 — 3 g(qizq?ia - q;oqn)?
2Aqisqin — Gioti2)  2(Giaiz + qiogin)  Gio — G — Gia + dis

The differential equation of equation (7) is giv®n
dXg; = dXs + ydXs

dYs; =dYs + deS
dZsi = dZs + ydZs

(12)
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For the same reason, we can gain the differentjalession of
equation (9) considering thgio,q:1,4:2,q:3 is the function of

q10,911,912,913 andg20,q21,q22,423.
8qinl 8qim
——dqi0 + -
0q10 0q11

dgi1 + das

8 im
dgi2 + ‘q dqis
0q13
8 im
dgas (13)
q23

dqiqn =

aqim aqim 8qi7n
L L PR L T L P
8(]20 420 8(]21 q21 8(]22 q22 B
(m=0,1,2,3)

In the equation (13), there are thirty-two defleotdifferential
coefficients. Through math deduction, we can obtdie
expression of these deflection differential coedfits simply.
The following is the expression of the deflectioiffedtential
coefficients fordg;o.

dqio _ 90 9Ci(t) dCs(t)
dqr0 3qlo( og 11 20 420) + C1(1)
dgio _ 00 (acl(t) dCs(t) )
91 dqu . o8 10 99 10
Oqio 00 ,0C1(t) aChH(t)
8(]12 - anQ( a6 qio + 90 q20)
dqio 98 9Ci(t) aCH(t)
aq13 - 8(113( 09 qio + ae (IQ())
dqio 90 ,0C(t) ACs(t)
dq20 B 8(]20( Bl qio 90 Q20) + Cz(t) (14)
dgio _ 00 (acl(t) dCs(t) )
dg1 Oqa1 - 00 Q0 99 10
Oqio 00 ,0C1(t) dCs(t)
8(]22 - aq22( a6 q10 + 90 q20)
dqio 98 9Ci(t) dCH(t)
aq23 - 8(123( o6 qio + 90 (IQ())
Where
0C1(t) (1 —t)cos(l—t)fsinf — sin(1l —t)f cosé
9 sin? @
9C»(t)  tcostfsind — sintf cosf
o sin® @
9% _ @0 9 aw
dqi0 1—(41-¢2)? 9420 V1= (@1 62)?
0 _ e % _ e
Oqu1 1— (41 ¢2)? dq21 1T— (1 Go)?
0 _ @2 90 ___ a
12 1—(q1-q2)? 9g22 1—(q1 - )2
U R —
Oqi3 1—(41-42)2 93 1T— (1 Go)?

Using the deflection differential coefficients ajueation (13) in

error equation (11), the error equation of extendentation

based on quaternion SLERP model is given by:
vy =k11dXs + k1odYs + kisdZs

+ k14dgio + k15dgi1 + kiedgiz + ki7dqis
+ Kigdgao + ki9dgzr + k110dges + ki11dges
+ yk11dXs + ykiodYs + ykisdZs — L

Ve =kh1dX s + kbodYs + kh3dZs
+ kygdqio + kasdqin + kaedqiz + kardqis
+ kbgdgao + kagdgzr + ka10dges + ka11dgas
+ ykhdX s + ykbodYs + ykhsdZs — 1,

(15)

Where
k11 = ki1 = (a1if + azix)/Z
k12 = k12 = (buif + bsix)/Z
kis = ks = (c1if +czix)/ 2

ko = ko1 = azif/?
koy = koo = baif/Z
by = kas = caif /1 Z
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K, = k14 OQzO + Fis 9qi1 4 ke Oqa + . 0q3 wa = (G50 + @31 + @32 + ¢33 — 1)
> dq10 9q10
OQzO 9¢i1 0%2 9¢is The above equations can be written as follow:
ks =k + k15 +k + k17 :
15 14 15 ()q 16 dq dql B;1'6;1: + W =0 (17)
OQzO 9¢i1 0¢i2 9¢is Where
ke =k k1s - k16 - k175
16 140 q12 th 0q12 + e 9q12 th 0q12 B — 000 qi0q11 1213000000 O]
k17 = k1a 0(]10 + ks ?Qi] +k (?QiQ + kyn (?(Ii3 ¢ 0000000 g20 g21 g22 23 000
9q13 0q13 9q13 Iq13 w = [w; wz]T
9qi 9qi Jq; dqi
kis = kia- q0+k15¢q]+/€16fq2+k17(q3 ) . .
a(lzo gqm 3020 gqm When there arn points, the total error equations is:
klo = k4 dqzo + k1s 8(11] + k16 aqﬂ + k”@ng
dun . O o Ows . Ou V=t ’} 18)
qi0 i1 qi2 )(qi3
o=k k1 kie ki7 .0, =
110 14 D0 + 158q2 + dq22 + k17 D2 B.d. + W. O. . .
dgio g dqio Aqis WhereV andl are the matrix witkn x 1;C is the matrix
K = AM 3 s 9q23 o 9q23 o " 023 with2n x 10;n is the number of ground control points (GCPs).
0%0 0qi1 0¢i2 0qi3
Kaq = kzq dq1i0 + ks dq10 + hae dq10 + har dq1i0 Supposed the weight matrix of observed vallP, ige can gain
9qio ~ 0gi1 Oqio 9qi3 the solution of equation (18) according paramedggusiment
ka5 = k2 o T 00 T 00 T o with constraints.
-1
dgio dqi1 0qi2 dqis Y=-N "Wy (19)
kye =k kas k: ka7
26 24 D12 + ka5 9412 + k26 Do + k2 9012 X
9q; aq; 9q; 9q; Where
kyr = kaa q0+k23 q]+k26 q2+k2"(q3 5 ctpc BY cTpc
9013 913 9q13 913 Y:[E],N:[ ‘T},Wy:{ ] (20)
0gio a(Jz] 0¢i2 0qi3 K B. 0 w
ks = kaa +k + ko + ka7
dq2 ® 940 9q20 . . .
i K aqio k aqi] k: Oqiz k Oqi3 When the number of GCkn > 6, given the initial value of line
29 = 2 5 gan + F2s a1 + foze a1 ¥ foar g1 and attitude elemend?, we can obtain the most probable value
i i dqio Tk Iqin Tk Iz . Jqis3 of the line and attitude elemerd ,; iteratively through equation
10 = M s P A % 0gan | Ogan (19) until that the result is smaller than the tafee.
9¢gio 9qin |, Oqi2 |, Oqis
ko = koag =t kasg kg ket 34  Summary of the algorithm

The expression clm andl, is as the same as that in equation

(11).

In the result of the above linearization equatitwe, form of the
coefficients is fit to program. Comparing with ttrditional

Euler angle model,
computation of trigonometric functions.

3.3 Computation of exterior orientation elements

The error equation (15) can be written in the meetyrm.

V=0C66+1
Where
V = [ve v,]"
C = ki Eig Eiin wkin o ykie
ks kb ko ykhy ykds

6, = [dXs dYs dZs dqio dgi1 dgi2 dgis
dg20 dgo1 dgaz dges dXs dYs dZS]T
L=1l.1,]"

ykis
yké:s

it successfully avoids a greaal dof

(16)

Because of the unit quaternion which is used tcriles the

attitude, there are two conditions in the erroratiuns.

dio+ah +aia+ais =1
Go+ @1+ @+ aa3 =1

The complete algorithm works as follows:

(1) Input the base data, including observed valtienage
points and the ground coordinate of the correspan@GCPs.

(2) Determine the initial values of exterior oriation elements
8%. In this quaternion algorithm, the initial valuéss not
special requirement. We just can give the initialues
as Xso = Xacrp , Yso=Yacrp , Zso=H , qo=1,
q1=q2=q3=0 , g=1, g1 =q2=¢3=0 ,
Xs=Ys = Zs = 0,whereXacp,Yaop are the average value
of GCPs ground coordinate. Then begin the iteration

(3) Compute exterior orientation elements of ev@gP using
equation (7) and (9), and calculate the quaternimtation
matrix using equation (1).

(4) Compute the matrC,l and weight matrixP using error

equation (16), and estimate value of the leastreguyarediction
8.

(5) Update the exterior orientation elements witirnfula
8L = 6% + 6., and check that whether the restis less than
the tolerance or not. If it is less than the tabery the iteration
ends, and the reswdl is the estimation value of the exterior

The two equations also should be linearized, and thorientation elements. Otherwise, repeat step e 4 until the

linearization equation is given by:

qrodqio + q11dqi1 + qi2dgi2 + qi3dgis + w1 =0

w1 = (Q%o + Qf1 + Q%Q + (]%3 -1)

q20dq20 + g21dg21 + @22dge2 + g23dges + w2 =0
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result of exterior orientation elements is lessittree tolerance.
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4. EXPERIMENTSAND RESULTS

The exterior orientation process of line-array Ci@iages is to
obtain the exterior orientation elements of the ge® using
GCPs and their image points. In order to verify effeciency of
this quaternion method, experiments are done osdhgion of
exterior orientation elements by various methods.

The experiment data used in this paper are two SP@ges
(Level 1A) of TangShan area in china: Image_01 lamahe_02,
which constitute a single stereo. The size of pideel is

13umx13um, the focal length of the camera is 1082 mm, an

the size of the image is 6000x6000. The flight heig about
830 000.0 m, the swath width is 60kmx60km, andaberlap
of these two images exceeds 80%. The ground caslises
Gaussian coordinate system, and the longitude aoiftrale
meridian is 117 degree. The ground altitude difieeeis 0~
500 m.

Figure 2 is the outline of GCPs which is distrilmlivenly in
images. The control points are measured from 1080,0
topographic maps. For Image_01 and Image_02, 1%raton
points are selected respectively, with 13 orieatapoints and 6
checking points. There are 13 homologous pointthé two
images.

We use the following methods in our experiments.
Method 1: Our algorithm

@
Figure 2. The outline of GCPs : (a) Image_01 (hadm 02

Method 2: LS estimation (Qian, 1991).
Method 3: General ridge estimation (Guo, 2003).

In order to validate the independence of the initedue of our
method, we use the coordinate of GCPs to compuwtenitial
value in our experiment. So, we consider that th&neot any
priori information of images, and the initial vatuare as follow:
Xso=Xacr , Yso=Yacr , Zso=H , qo=1,
g1 =q2=q3=0 , @o=1, @1 =¢2=qp3=0 ,
Xs=Vs=25=0.

qn our experiments, we use the analytical methcan@yse the

precision. The solution precision of exterior ot&ion
elements can be evaluated by the following two kimec
methods. One is computing the reprojection errtve dther is
computing ground points coordinate by space inttise, and
then calculating the mean square error.

In table 3 and table %,.,v0y,v.x,v0v,v.zare the precision
(mean square error) for the image coordinateg and the
ground coordinateX,Y,7 of orientation points respectively;
while vz, vey,vex,vey,vez are the precision (mean square
error) for the image coordinatrsy and the ground coordinates
XY, Z of the checking points respectively.

(b)

Mean Square error for the coordinates Mean Square error for the coordinates
Method of orientation points of checking points
vo/PiXel v,,/Pixel  vox/Im  woy/m  wozim we/Pixel ve/Pixel vex/m  wvey/m  wez/m
Method 1  0.91 0.87 7.68 10.16 17.08 1.35 1.22 13.40 10.13 .38}
Method 2 1.68 1.58 20.03 22.87 84.92 1.90 1.82 25.87  31.896.329
Method 3 0.91 0.93 9.23 14.92 41,94 1.61 1.12 20.79  13.43 .3%638
Table 3. Orientation precision of Image_01 undeiowes methods
Mean Square error for the coordinates Mean Square error for the coordinates
Method of orientation points of checking points
VoalPixel v /Pixel wvox/m woy/m wozim we/Pixel v /Pixel vex/m  wveylm  wez/m
Method ]  0.89 0.91 7.68 10.16 17.08 1.50 1.27 13.40 10.13 .38}
Method 2 1.52 1.58 20.03 22.87 84.92 171 1.49 25.87  31.896.329
Method 3§ 1.08 1.59 9.23 14.92 41,94 1.25 2.14 20.79  13.43 .3%63

Table 4. Orientation precision of Image_02 undeiots methods
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From table 3 and table 4, it can be seen that thetegnion
algorithm can obtain exterior orientation elemeniscessfully.
The plane positioning precision is about 1 GSD, aeiter than
that of the LS estimation and the general ridgemedion.
However, the height positioning precision is ledmaable, we
think that the main reason is the influence of ieasure error
for GCPs. Of course, due to the initial valuesclhgained by
GCPs only, the positioning precision of the LS raation and
the general ridge estimation is not very high, #rat show our
algorithm is independence on the initial values.tid¢ same
time, special calculation measures are not requiredhe
computing process, which shows that the influerfcdi-posed
problem is weaken effectively by this quaterniogoaithm.
However, because the attitude quaternions whichd use
describe the exterior orientation elements of thet find the
last scan line of a line-array CCD image are unkmowmbers,
the redundant parameters is also exited, and adsgamches are
needed.
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