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ABSTRACT: 
 
As an application of Compressive Sensing (CS) in remote sensing area, the theoretical frameworks of SAR and optical imaging 
system based on CS are investigated. The processes of data acquisition are mathematically described. After that the sparse 
representation of images corresponding to the two systems are also presented. Finally, the spare recovery is employed to retrieve 
images. Numerical simulations validated the feasibility of such imaging systems. 
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1. INTRODUCTION 

Compressive Sensing (CS) provides us with a new theory for 
signal/image acquisition. Employing this theory, we can 
reconstruct signals with equivalent or better qualities (e.g.: 
resolution, SNR, etc.) by using less sensors, slower sampling 
rate, smaller data size or lower power consumption than that 
required in traditional system. Instead of uniform and periodical 
samples, CS measurements are formed by the inner products of 
signals with certain sensing matrix. The sparsity of signal is 
exploited to accurate recovery, and the measurements utilized 
are no longer depending on the signal’s bandwidth but on the 
signal’s sparsity. Generally speaking, the dimension of 
measurement vector is logarithmically with the dimension of 
signal (Candes, 2006; Candes, 2006b; Candes, 2006c; Donoho, 
2006).  
 
In this paper, we focus our research on the application of CS in 
remote sensing systems, and especially for optical and synthetic 
aperture radar (SAR) imaging system. In the area of optical 
compressive imaging, Baraniuk’s group realized a Rice Single-
Pixel CS Camera (Duarte, 2008), in which the Digital Micro-
mirror Device (DMD) is served as sensing matrix. This camera 
suffers from an inherent inefficiency: sequential measurements 
are needed. But in many scenarios, there is a high-speed 
movement between the imaging sensor and target (such as 
spaceborne remote sensing), and the sequential multiple 
measurements is not permitted. A. Stern and B. Javidi proposed 
a random projection imaging system (Stern, 2007), in which the 
measurements are obtained within a single exposure by using a 
random phase mask. Enjoying sparse recovery, the more object 
pixels may be reconstructed and visualized than the number of 
pixels of the image sensor. But the design of sensing matrix and 
sparse recovery algorithm desire much improvement. 
Meanwhile, in the area of radar imaging, Baraniuk introduced a 
compressive radar imaging system (Baraniuk, 2007), but the 
simulation is too simple and far away from practical application. 
Besides, J. Romberg proposed a sampling strategy (Romberg, 
2008) based on “random convolution”, and discussed its 
application in radar and Fourier optics conceptually. 
 

We investigated the theoretical frameworks of compressive 
radar and optical imaging systems, which involves: 1) 
mathematically reformatted the processes of data acquisition of 
SAR and optical imaging in the form of linear system, and then 
the imaging process becomes the inverse problem. Furthermore, 
a process called random phase modulation is specially designed 
for CS optical imaging system. 2) The sensing and sparse 
representation matrices are chosen according to the 
characteristics of data acquisition and images from SAR or 
optical imaging systems respectively. Due to the large data 
scale of two-dimensional imaging problem, we also give 
attentions to the computational efficiency of sparse recovery. 
Finally, in each system, numerical simulations are conducted to 
validate the feasibility. Especially, the data for CS SAR 
imaging is generated from professional electromagnetic 
scattering computing software which is similar to real SAR raw 
data. 
 
 

2. COMPRESSIVE SAMPLING AND SPARSE 
RECOVERY 

Different from the traditional uniform and periodical samples, 
the measurements in CS are the projections of the signal onto 
the sensing matrix, i.e. 

0= +y Φx ε                                   (1) 
where 0x is the N-dimensional signal, y is the M-dimensional 
measurement, Φ is the sensing matrix, ε stands for the noise in 
the data acquisition process, and its variance is 2σ . The 
dimension of y is far smaller than 0x , i.e.: M N� . In order to 
reconstruct original signal, the sparsity of 0x is required, that is, 
with a representation matrix Ψ , we can decompose 0x  as 

0 0=x Ψα , where the coefficient 0α  has at most K  non-zero (or 
almost non-zero) components. Substitutes the signal’s sparse 
representation into Eq. (1), then 

0 0= + +y ΦΨα ε Θα ε� ,                          (2) 
where Θ is a matrix compound by the representation and 
sensing matrix.  
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The coefficient 0α , so the signal 0x , can be recovered by 
solving a convex program  

2 2
1 2

min s.t. σ− ≤α y Θα ,                         (3) 
given the matrixΘ obyes a Restricted Isometry Property (RIP) 
(Candes, 2006c).  
 
Roughly speaking, the RIP has restrained the theoretical lower 
bound of number of measurements. For M N× -dimensional 
random sensing matrices whose entries are independently 
generated according to the Gaussian or Bernoulli distribution, 
when the sparsity of signal K  and the dimension of signal N 
are given, the number of measurements M must obey 

logM K N≥ . 
 
Many algorithms have been developed to handle the 
optimization in Eq. (3). Basis Pursuit (BP) (Chen, 1999) is one 
of the first proposed methods. This method enjoys rigorous 
proofs of exact reconstruction, but suffers from heavy 
computationally burdens and can not be used in two-
dimensional imaging which involves data with large scale. 
Algorithms proposed recently have improved computationally 
complexity without loss of precision. These algorithms include: 
Gradient Projections for Sparse Reconstruction (Figueiredo, 
2007), Sparse Reconstruction by separable approximation 
(Wright, 2009), Spectral Projected Gradient (Van Den Berg, 
2008), Fixed Point Continuation method (Hale, 2008) and its 
modification (Wen, 2008), Bregman iteration (Cai, 2008; Osher, 
2008) etc. 
 
The sparse recovery algorithm employed in this paper is Fixed 
Point Continuation (FPC) algorithm, which can solve large 
scale problem. We briefly describe it in Algorithm 1. 
 
Algorithm 1 (FPC algorithm) 
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The value of relevant parameter recommend are: 61 10μ −= × , 

1.999τ = , 4η =  and 51 10xtol −= × . 
 
 

3. RADAR IMAGING BASED ON CS 

Radar image is a reflection of the electromagnetic scattering of 
the illuminated target. The process of “Radar Imaging” is to 
obtain the scattering coefficients from radar echo (i.e. the 
inverse process of radar echo generation). Supposing ( ),x yp pσ  

a two-dimensional function which describes the scattering 
coefficients, and then the radar echo can be modeled as follows: 

( ) ( ) ( )4, , exp cos sinx y x y x y
fE f p p j p p dp dp

c
πϕ σ ϕ ϕ⎧ ⎫= +⎨ ⎬

⎩ ⎭∫∫  (4) 

where ( ),E f ϕ is the radar echo, f is frequency of the 
electromagnetic wave, ϕ is the angle of radar observation, and 
c  is the speed of light.  
 
The basic principle of classical SAR imaging is employing Fast 
Fourier Transform (FFT) to reconstruct ( ),x yp pσ . It is worth to 
mention that the actual radar echoes contain phase errors caused 
by non-ideal motion of target. These phase errors should be 
compensated before SAR imaging (Bao, 2006). 
 
In this paper, we utilize CS for radar sampling and imaging. 
Firstly, under the hypothesis of “point scattering model” 
(Huang, 2006), the radar images are sparse in their original 
(space) domain, so we can take identity matrix as the sparse 
representation matrix.  
 
Secondly, we will re-format the generation of radar echo in the 
framework of CS. Supposing the scattering coefficients 
( ),x yp pσ  can be represented by a N N× -dimensional 

matrix, and can be reshaped into a 1N × -dimensional vector σ . 
Matirx F  stands for a N N× -dimensional Kronecker product 
matrix, which is produced by two identical N N× -
dimensional Fourier transform matrices. Based on these, a 
discrete version of Eq. (4) can be described as  

= ⋅E F σ .                                      (5) 
Where E  is a matrix represents radar echoes. Furthermore, 
assuming an random index set { }1, , N⊂Γ K  obeys M N=T � , 
then, a sub-matrix ΓF  can be formed by selecting M rows 
from F according to Γ . So the compressive radar sampling 
process can be described as 

= ⋅Γ ΓE F σ .                                   (6) 
Note that the dimension of ΓE is far lower than E .  
 
Finally, the scattering coefficients vector σ  is retrieved by 
sparse recovery as Eq. (3). 
 
In our simulation, electromagnetic scattering computing 
software is employed to generate radar echoes of airplane A10. 
The overview of the 3D model of airplane A10 is shown in Fig. 
1, and some radar parameters are list in Table 2. 
 
The sensing matrix ΓF is constructed by randomly selecting 30% 
rows of the 65536 × 65536 dimensional Kronecker product 
matrix F , and compressive measurement is then generated. The 
imaging results from conventional FFT-based and sparse 
recovery methods are listed in Fig. 3. We can see from this 
figure that there are only two intense scattering points in the 
first image and other scattering points are missed. The sparse 
recovered image (Fig. 3(b)) clearly describes the outline of 
airplane. This comparison can validate the feasibility of the new 
principle for radar sampling and imaging based on CS. 
Besides, the resolution of SAR image also can be enhanced via 
sparse recovery. The resolution of conventional correlation-
based imaging is limited by the ambiguity function of the 
transmitted signal; while the resolution of the sparse recovery is 
determined by the accuracy of optimization and the 
discretization of scattering coefficients σ . 
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Figure 1.  An overview of the 3D model of A10 

 
Table 2. Radar observation parameters 

Carrier frequency 9G Hz (X band) 

Bandwidth 200M Hz 

Azimuth angles 44°to 47° 
Polar angles 60° 

Amount of samples 256× 256 
 

 

 
(a) 

 
(b) 

Figure 3.  Result comparing of the two methods based on 
30% measured data. (a) conventional FFT-based 
method, (b) sparse recovery. 

 
 

4. OPTICAL IMAGING BASED ON CS 

The basic composition of the proposed random phase 
modulation and sparse sampling based imaging system is 
sketched in Fig. 4. The incident lights are firstly transformed to 
their frequency domain by a Fourier Transform (FT) lens. Then, 
the transformed lights will be leaded to a Spatial Light 
Modulator (SLM), and the SLM will add random phases to the 
lights which pass through its pixels. That is called random 
phase modulation in this paper. Subsequently, the modulated 
lights will be transformed back to space domain by an inverse 
Fourier Transform (IFT) lens. After that, the lights will be 
randomly and sparsely sampled by a two-dimensional detector 
array. A typical SLM consist of liquid crystal pixels, each 
independently addressed, acting as separate variable amplitude 
and phase modulator. In the proposed imaging system, the SLM 
is placed at the image plane of the FT lens. 
 

 
Figure 4.  Schematics of the random phase modulation and 

sparse sampling system. 
 

Suppose 0x  is the reshaped 1N × -dimensional image (whose 

original dimension is N N× ), and its frequency spectrum is 
0Fx , where matrix is the same as defined in Eq. (5). The SLM 

can be mathematically described as a N N×  diagonal matrix Σ , 
whose non-zero entries are ( )exp , 1nj n Nπ ϕ− ⋅ ≤ ≤ , where 

( )Uniform [ 1,1]nϕ −� . The sparse sampling is realized by a 
multiplication of a M N×  matrix S , whose rows are randomly 
selected from a N N×  diagonal matrix whose entries in 
diagonal line obey (0, 1) binominal distribution. Then, the 
whole process of Fig. 4 can be mathematically described as 

1
0

−=y SF ΣFx                               (7) 

where 1−F stands for two-dimensional IFT matrix.  
 
The function of the phase modulation (i.e. multiplication of 
matrix Σ ) is to translate phases of the spectrum to “noise like” 
modalities. So, when the modulated spectrum is transformed 
back to space domain, its energy will evenly spread out of the 
entire image plane. This means that each sample from the 
detector will carry some mixed information about the original 
image. If sufficient measurements (which is still much less 
than N ) are obtained, we can reconstruct the image according 
to Eq. (3). In other words, the random phase modulation 
extended the space-bandwidth product of original signal. It, 
together with the sparse recovery, enables the system to acquire 
more detailed (high-resolution) images with fewer 
measurements. 
 
The sparse representation in optical imaging is more 
complicated than radar imaging, where identity matrix is 
chosen. Borrowing the idea form JPEG and JPEG2000 stands, 
we employ Discrete Cosine Transform (DCT) and Discrete 
Wavelet Transform (DWT) to construct our sparse 
representation matrix.  
 
The feasibility of the proposed random demodulation and spare 
sampling based optical imaging system is validated by a 
numerical experiment in this section. The original image in the 
simulation is show in Fig. 5(a). The measurements are 
generated according to Eq. (6), and 0.5M N ≈ . Fig. 5(b) shows 
an image from direct reconstruction, which is an inverse 
process of Eq. (6). The sparse recovery gives much better 
results. Two different images are shown in Fig. (c) and (d), 
which corresponding to DCT and DWT representation matrix 
respectively. 
 
One of the superiorities of CS is reducing the measurement for 
image reconstruction. Fig. 6 shows the curve of RMSE of 
sparse recovery with DCT and DWT due to the variation of 
M N . 
 
 
 
 
 
 

In: Wagner W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7A
Contents Author Index Keyword Index

79



 

 

 

200 400 600 800 1000
 

(a) 
200 400 600 800 1000

 
(b) 

 

 

200 400 600 800 1000
 

(c) 
200 400 600 800 1000

 
(d) 

Figure 5.  Result of the CS based optical imaging simulation. 
(a) original image, (b) direct reconstruction 
(RMSE: 0.30), (c) sparse recovery with DCT 
matrix (RMSE: 0.06), (d) sparse recovery with 
DWT matrix (RMSE: 0.05). 
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Figure 6.  Curve of RMSE of sparse recovery 

with DCT and DWT due to the 
variation of M/N. 

 
 

5. CONCLUSIONS 

Benefit from its potential for alleviating the data sampling and 
storage system, CS theory has received more and more 
attentions. As an application in remote sensing area, the 
theoretical framework of SAR and optical imaging based on 
compressive sampling and sparse recovery is investigated in 
this paper. Numerical simulation validated the feasibility of the 
systems.  
 
CS theory also can be employed in any signal acquisition 
system which can be re-formulated as an inversion of linear 
equations. However, the primary restriction is the 
computational efficiency in sparse recovery. Although we have 
emphasized this problem in our algorithm, the consumption of 
memory and time still substantially exceeds that of the 
conventional imaging method, particularly when the images are 
large.  
 
Future research will focus on the further alleviation of the 
computational burdens. The other important point is the 

optimization of sensing matrix, which will permit exactly 
reconstruction with fewer measurements. The difficulty of 
physical realization will also be taken into account during the 
optimization. 
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