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ABSTRACT: 
 
The temporal evolution of vegetation activity on various land cover classes in the Spanish Pyrenees was analyzed. Two time series 
of the normalized difference vegetation index (NDVI) were used, corresponding to March (early spring) and August (the end of 
summer). The series were generated from Landsat TM and Landsat ETM+ images for the period 1984-2007. An increase in the 
NDVI in March was found for vegetated areas, and the opposite trend was found in both March and August for degraded areas 
(badlands and erosion risk areas). The rise in minimum temperature during the study period appears to be the most important factor 
explaining the increased NDVI in the vegetated areas. In degraded areas, no climatic or topographic variable was associated with the 
negative trend in the NDVI, which may be related to erosion processes taking place in these regions. 
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1. INTRODUCTION 

Maps of active erosion areas and areas at risk of erosion are of 
great potential use to environmental agencies (governmental 
and private), as such maps allow erosion prevention efforts to 
be concentrated in places where the benefit will be greatest. 
There is no single straightforward method for assessing erosion, 
as erosion is highly dependent on the spatial scale and the 
purpose of the assessment (Warren, 2002). Methods for 
evaluating erosion risk at catchment and regional scales (10-
10,000 km2) include the application of erosion models, or 
qualitative approximations using remote sensing (RS) and 
geographic information system (GIS) technologies. RS and GIS 
techniques have been shown to be of potential use in erosion 
assessment at regional scales, including the identification of 
eroded surfaces, estimation of factors that control erosion, 
monitoring the advance of erosion over time, and investigating 
vegetation characteristics and dynamics (Lambin, 1996). 
Various studies have identified changes in vegetation dynamics 
at continental, regional, and local scales in recent decades. Most 
changes have been caused by human activity, particularly 
deforestation and forest fires (Riaño et al., 2007), but land 
marginalization and rural abandonment have contributed to 
natural revegetation processes in some regions (Vicente-
Serrano et al., 2004). However, numerous reports have found a 
general increase in vegetation activity in various ecosystems of 
the world, suggesting that the principal causes of changes in 
vegetation dynamics are variations in precipitation and/or 
temperature (Delbart et al., 2008). 
Changes in vegetation in the Mediterranean region have 
followed very different patterns. In general, vegetation growth 
tends to be favored by increased temperature in areas where 
water is not a limiting factor (Martínez-Villalta et al., 2008). 
Studies in the Spanish Pyrenees (Lasanta and Vicente-Serrano, 
2007) have investigated spatial and temporal variations in 
vegetation cover at regional and local sc ales to i) assess 
changes in the vegetal cover in the last 50 years; ii) detect 
trends in the global vegetation biomass; iii) explore changes in 
leaf activity in forest regions; iv) detect the climate drivers 
(temperature and precipitation) and spatial patterns of aridity; 

and, v) to determine the effects of human land uses. All 
previous studies have focused on well-vegetated areas, and very 
few reports have analyzed spatial and temporal variations in 
vegetation cover on active erosion areas and erosion risk areas, 
where vegetation is sparse. Badlands are usually defined as 
intensely dissected natural landscapes where vegetation is 
scanty or absent. Alatorre and Beguería (2009) identified active 
erosion and erosion risk areas in a badlands landscape of the 
Spanish Pyrenees using RS techniques. The presence of bare 
soil surfaces and the large size of badlands enabled good 
discrimination using RS data. However, the erosion risk areas 
surrounding badlands, coinciding with the transition zone from 
badlands to scrubland or forest, were characterized by poor 
vegetation cover (10-50%). For this reason, the analysis of 
vegetation dynamics on active erosion and erosion risk areas is 
very relevant to the design of measures for the mitigation and 
remediation of soil erosion and sediment transfer. 
The objectives of this study were i) to obtain time series of 
vegetation activity during two contrasting periods of the growth 
cycle (early spring and the end of summer) for various land 
cover classes, including both well-vegetated and degraded 
areas; ii) to determine the extent by which climate controlled 
vegetation activity in the various land cover classes, and to 
define temporal trends; and, iii) to analyze the spatial 
distribution of trends in vegetation activity on erosion risk 
areas, as indicators of recovery and degradation, and to quantify 
the effects of various topographical factors on such trends.   
 
 

2. STUDY AREA 

The study area, located at 620-2,149 m altitude approximately 
23 km north of the Barasona Reservoir (Spanish Pyrenees), is 
an integrated badlands landscape orientated 
northwest−southeast and developed on Eocene marls (Fig. 1A 
and B). A land cover map based on the supervised maximum 
likelihood method (Alatorre and Beguería, 2009) showed that 
the study area is occupied by five principal land cover 
categories: badlands, 19 km2 (8.0%); coniferous forest, 65 km2 
(28.0%); deciduous forest, 21 km2 (9.0%); grassland, 32 km2 

In: Wagner W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7A
Contents Author Index Keyword Index

7



 

(13.0%); and scrubland, 99 km2 (42.0%). The spatial 
distribution of land cover showed that the areas occupied by 
scrub and the grass border areas could be classified as badlands 
(Fig. 1C). This spatial distribution suggested that a progressive 
transition between eroded areas and forest (Fig. 1C). In the 
same study, a map of the active erosion (badlands) and erosion 
risk areas was obtained, with the surface areas of these classes 
comprising 17 km2 and 49 km2, respectively (Fig. 1D). The 
surface area of the active erosion region was the same as that 
obtained from a land cover map generated using the supervised 
maximum likelihood method. The badlands system comprises a 
group of typical hillside badlands developed on sandy marls 
with clay soil, and is strongly eroded over convex hillsides with 
moderately inclined slopes. Visual comparison of maps showed 
that the erosion risk areas corresponded principally to the 
scrubland class (and in some cases the grassland and conifer 
classes) bordering the badland areas. These areas had spectral 
characteristics intermediate between badlands and scrubland, 
indicating either a mixture of classes within a pixel or an 
intermediate level of degradation (for more details of the study 
area please see, Alatorre and Beguería, 2009). 
 

 
 

Figure 1. A) Location of the study area: i) subset area indicates 
the location of badland areas on marls (236 km2); ii) the gray 

zone indicates the area of the Landsat scene; iii) the black 
squares indicate the location of meteorological observatories of 
the National Agency of Meteorology. B) Digital terrain model 
(DTM). C) Land cover map based on supervised classification 

using the maximum likelihood method and the maximum 
probability classification rule (Alatorre and Beguería, 2009). D) 

Erosion risk maps (Alatorre and Beguería, 2009). 
 
 

3. DATA AND METHODS 

3.1 Data selection and preparation 

A database of Landsat TM and Landsat ETM+ images for the 
period 1984-2007 was used. The database comprised 28 images, 
16 of which were from a summer time series and 12 from a 
spring time series. The two time series were used to identify 
possible differences in vegetation dynamics as a function of 
seasonal differences in vegetation activity, and to assess with 
more robustness any spatial and temporal patterns in vegetation 
activity. Table 2 shows the dates of the images used in each 
time series. The database was processed using a procedure that 

included calibration and cross calibration of the images (for 
more details please see, Alatorre and Beguería, 2009). The 
procedure allowed accurate measurements of physical surface 
reflectance units to be obtained. The correction applied to the 
images guaranteed the temporal homogeneity of the dataset, the 
absence of artificial noise caused by sensor degradation and 
atmospheric conditions, and spatial comparability among 
different areas, given the accurate topographic normalization 
applied. Details of the correction procedure applied to the 
images, and a complete description of the dataset and its 
validation have been described by Vicente-Serrano et al. 
(2008). 
Time series of the normalized difference vegetation index 
(NDVI) were obtained from the original Landsat TM and 
Landsat ETM+ images, for the purpose of monitoring 
vegetation activity. The NDVI was computed as (Rouse et al., 
1974): 
 

  
RIR

RIR

ρρ

ρρ
NDVI

+
−=   (1) 

 
where ρIR is the reflectivity in the near-infrared region of the 
electromagnetic spectrum and ρR is the reflectivity in the red 
region. Several studies have demonstrated a strong relationship 
of the NDVI to the fraction of photosynthetically active 
radiation, the vegetation biomass, the green cover, and the leaf 
area index. Hence, high NDVI values are indicative of high 
vegetation activity. A land cover map comprising the major 
vegetation types in the study area was also used, as well as a 
map of active erosion areas (badlands) and areas at erosion risk 
(Alatorre and Beguería, 2009). 

 
March August 

Acquisition date Sensor Acquisition date Sensor 
03/11/1989 TM 08/20/1984 TM 
03/30/1990 TM 08/07/1985 TM 
03/06/1993 TM 08/13/1987 TM 
03/09/1994 TM 08/02/1989 TM 
03/28/1995 TM 08/24/1991 TM 
03/17/1997 TM 08/10/1992 TM 
03/20/1998 TM 08/29/1993 TM 
03/23/1999 TM 08/03/1995 TM 
03/17/2000 ETM+ 08/24/1997 TM 
03/10/2003 ETM+ 08/14/1999 TM 
03/07/2005 TM 08/08/2000 ETM+ 
03/13/2007 TM 08/26/2001 ETM+ 
  08/30/2002 ETM+ 
  08/27/2004 TM 
  08/18/2005 TM 
  08/01/2006 TM 

 
Table 2. Dates for the Landsat 5 TM and 7 ETM+ images used 

in the study. 
 
To analyze climate effects on the vegetation activity we used a 
database consisting of three daily rainfall series from the 
National Agency of Meteorology, comprising data since 
January 1984 (Fig. 1A). To guarantee the quality of the dataset 
the series were checked using a quality control process that 
identified anomalous records and analyzed the homogeneity of 
each series (for more details see Vicente-Serrano et al., 2009). 
Daily temperature data were obtained for the same period from 
the Serraduy station (Fig. 1A), and these were also checked for 
possible temporal inhomogeneities. The time series of 
precipitation totals and maximum/minimum temperature 
averages were computed from the original daily series by 
aggregating the original daily values over the period 
immediately before the images were taken. Thus, climatological 
series were computed for the following time periods prior to the 
date of the image: 15 days, 30 days, 3 months (January, 
February and March for the March images; June, July and 
August for the August images) and 6 months (October to 
March, and March to August, respectively). A series of 
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topographical variables was also analyzed to assess their effects 
on vegetation activity. This involved use of a digital terrain 
model (DTM) with a spatial resolution of 20 m to derive the 
slope gradient (m m-1), as some studies have shown that this can 
be a major factor explaining rates of vegetation recovery 
(Pueyo and Beguería 2007). We also derived a model of the 
incoming solar radiation (MJ m-2 day-1) to assess topographic 
control of the energy balance, using an algorithm that includes 
the effect of terrain complexity (shadowing and reflection) and 
the daily solar position (Pons and Ninyerola, 2008). 
  
3.2 Statistical analysis 

The temporal series of NDVI for each land cover class was 
checked for temporal trends using the Spearman’s correlation 
test against time. This enabled analysis of the vegetation 
dynamics in terms of increased (positive correlation) and 
decreased activity (negative correlation). The significance of 
the trends was checked using the p value associated with the 
Spearman’s rho statistic.  
 
The Spearman’s test enables detection of temporal trends in the 
NDVI series, but does not identify the driving factors involved. 
To determine the control exerted on vegetation activity by 
climate, and to isolate climate from other factors, we performed 
a multivariate regression analysis of the average NDVI values 
in March and August for the various land cover classes against 
the climatic variables. As a preliminary step we undertook a 
correlation analysis to determine the most appropriate time span 
for the climatologic time series. For both the March and August 
images we found that the climatological series computed for the 
3 months prior to the images had the greatest correlation with 
the NDVI. Therefore, we used the time series of cumulative 
precipitation and average maximum/minimum temperature for 
the 3 months before the acquisition date as covariates in the 
regression analysis. 
As the acquisition date of the images did not coincide among 
years, which could have affected the NDVI (especially in 
March, which is very close to the start of the growing period), 
we also introduced the Julian day of the image as a covariate. 
To check for temporal trends in the NDVI values that were not 
explained by variability of the climatic factors and the 
acquisition date of the images, we also incorporated the year of 
acquisition of the image as a covariate. 
We used a backward stepwise procedure based on the Akaike’s 
information criterion statistic (AIC), as implemented in the 
function stepAIC in the R package for statistical analysis (R 
Development Core Team, 2008). This function aided 
identification of the significant explanatory variables for the 
time evolution of the NDVI for the various land cover classes. 
The data analysis was based on the goodness of fit and 
statistical significance of the regressions, the explanatory 
variables selected, and the beta (standardized) regression 
coefficients. 
To provide a spatially distributed analysis, the multivariate 
regression analysis was repeated on a pixel-by-pixel basis for 
the erosion risk areas alone. This enabled mapping of the spatial 
distribution of NDVI trends not explained by climatologic 
factors, and thus identification of areas undergoing processes of 
degradation or recovery. Finally, a correlation analysis was 
performed on the NDVI trends against various topographical 
factors (elevation, slope gradient and potential incoming solar 
radiation), and a bootstrap procedure was used to determine the 
statistical significance of the correlations. Thus, 1,000 
repetitions of the correlation analysis were performed on 
random samples containing approximately 1% of the pixels 

belonging to the erosion risk class, and the resulting 
significance statistics (p values) were averaged. This enabled 
avoidance of a sample size effect that would arise if all the 
pixels of the erosion risk class (approximately 45,000) were 
introduced together in the analysis, causing the significance test 
to become over sensitive and thus unreliable. 
 
 

4. RESULTS AND DISCUSSION 

4.1 Temporal variation of the NDVI over all land cover 
categories, 1974-2007. 
 
The temporal variation of the mean NDVI values in March and 
August was assessed for each land cover category (Fig. 2, Table 
2). In both time series there was a clear difference between the 
vegetated categories (deciduous and coniferous forests, 
grassland and scrubland) and degraded areas (badlands and 
erosion risk areas). The vegetated areas had higher NDVI 
values, and the greatest average NDVI values occurred in 
August. The NDVI values in March showed positive temporal 
trends (i.e., the average NDVI increased with time) for all 
vegetated classes, particularly for deciduous and coniferous 
forests where the trends were almost significant at the α = 0.05 
level. Nevertheless, the increase in the NDVI was not constant, 
and in some years (e.g., 1997 and 2003) a decrease in the 
average NDVI was detected relative to the general trend (Fig. 
2). The NDVI values in August did not show significant 
temporal trends for any vegetation class. These results suggest 
an increase in vegetation activity during the study period, 
especially in March, when the conditions for growth are best. 
The degraded areas (badlands and erosion risk areas) had the 
lowest average NDVI values, which differed little between 
March and August because of the very low vegetation cover 
(Table 2). The NDVI trends were negative in both March and 
August, and were stronger in the erosion risk areas, for which 
statistical significance was found in the August time series. This 
may indicate the presence of a degradation process, such as soil 
erosion, in these areas. 
These results suggest that the occurrence of contrasting 
temporal trends in the overall area depends on the nature of the 
land cover, with well-vegetated areas undergoing an increase in 
vegetation activity and degraded areas suffering a process of 
further degradation. However, the time variability of the NDVI 
may also be explained by the evolution of climatic conditions, 
as discussed below. 
 
4.2 Regression analysis of NDVI versus climatic variables 
 
Regression analysis helped explain the observed NDVI 
temporal patterns of the various land cover classes. The 
regression models generally fitted the observed NDVI values 
well, although for pastures, badlands, and erosion risk areas in 
March, the model results were slightly below the confidence 
level (Table 3). A better fit was obtained in March for well-
vegetated areas (pine and deciduous forests, and scrubland) than 
for less vegetated regions (pastures, badlands, and erosion risk 
areas), as shown by the lower R2 values. In August the 
goodness-of-fit was similar for all land use classes (Table 6). In 
all models one or more climatic variables were identified as 
significant, indicating that climatic conditions were important in 
explaining the evolution of vegetation activity. 
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 March August 
 NDVI NDVI trend NDVI NDVI trend 
Land cover class mean sd rho p-value Mean sd Rho p-value 
Deciduous forest 0.63 0.10 0.517 0.0862 0.65 0.11 0.321 0.224 
Conifers 0.56 0.12 0.573 0.0538 0.61 0.12 0.168 0.520 
Grassland 0.49 0.11 0.336 0.281 0.55 0.15 -0.0265 0.926 
Scrubland 0.50 0.11 0.294 0.348 0.52 0.13 -0.0899 0.741 
Risk erosion areas 0.48 0.11 -0.196 0.543 0.50 0.14 -0.594 0. 0173 
Badlands 0.42 0.12 -0.0420 0.904 0.41 0.16 -0.250 0.349 

 
Table 3. NDVI values and temporal NDVI trends (Spearman’s 
rho correlation with time and significance) for each land use 

category for March and August. 
 

 
Figure 4. Temporal evolution of the mean NDVI values for 

March and August between the categories of land cover map 
and erosion risk areas. 

 
 Pine 

forest 
Deciduous 
forest 

Scrubland Pastures Erosion 
risk 

Erosion 
(badlands) 

R2 0.743 0.779 0.615 0.424 0.467 0.547 
p-value 0.002 0.001 0.045 0.084 0.150 0.082 
Residual standard error 0.561 0.520 0.728 0.839 0.856 0.789 
Beta coefficients:       
 Precipitation -0.317 -- -0.298 -- -- -- 
 T max -- -- -- -- -- -- 
 T min 0.683 0.678 0.371 1.11 0.701 0.716 
 Julian day -- -0.310 -0.326 -- -0.377 -0.457 
 Time (year) -- -- -- -0.705 -0.845 -0.719 
Temporal trend (change 
in NDVI): 

      

 per year -- -- -- -
0.00216 

-0.00433 -0.00326 

 period 1989-
2007 

-- -- -- -4.03% -7.91% -6.02% 

 
Table 5. Regression analysis of NDVI values for March in 

relation to climatic conditions. 
 
 Pine 

forest 
Deciduous 
forest 

Scrubland Pastures Erosion 
risk 

Erosion 
(badlands) 

R2 0.599 0.591 0.663 0.640 0.681 0.663 
p-value 0.028 0.031 0.004 0.005 0.003 0.004 
Residual standard error 0.739 0.747 0.649 0.671 0.632 0.649 
Beta coefficients:       
 Precipitation -0.325 -0.421 -- -- -- -- 
 T max -1.59 -1.45 -1.66 -1.62 -1.23 -1.50 
 T min 1.31 1.34 1.21 1.09 0.806 1.42 
 Julian day -- -- -- -- -- -- 
 Time (year) -0.481 -0.507 -0.688 -0.646 -1.000 -0.789 
Temporal trend (change 
in NDVI): 

      

 per year -
0.00197 

-0.00247 -0.00241 -
0.00244 

-
0.00363 

-0.00210 

 period 1984-
2006 

-4.43% -5.53% -5.40% -5.46% -8.02% -4.72%  

 
Table 6. Regression analysis of NDVI values for August in 

relation to climatic conditions. 
 
However, there were differences between March and August, as 
well as between land cover classes. In March the average 
minimum temperature was the most important explanatory 
factor, as evidenced by the fact that this parameter had the 

largest (standardized) beta coefficient. The effect of the 
minimum temperature was positive in all cases, with high 
minimum temperatures yielding elevated NDVI values. This 
reflects the importance of relatively warm weather at the end of 
winter/early spring, at the start of the growing period. The 
maximum temperature was not a significant explanatory factor 
for any land use class, and cumulative precipitation was 
significant in only a few cases (pine forest and scrubland). 
Counter-intuitively, cumulative precipitation had a negative 
effect on the NDVI (i.e., greater precipitation resulted in lower 
NDVI), as shown by the negative signs of the beta coefficients. 
The time of acquisition of the image (variable = ‘day’) was 
significant in March for all land cover classes except for pine 
forest and pasture, suggesting the relevance of the phenological 
state of vegetation at this time of the year. In August the 
average minimum temperature was also significant (positive) 
for all land cover classes, but the most important explanatory 
factor was the average maximum temperature. This showed the 
highest absolute beta coefficient and a negative effect in all 
cases, meaning that a warm summer resulted in lower NDVI 
values. Cumulative precipitation was significant only for the 
pine and deciduous forests, where it also had a negative effect 
on the NDVI. The time of acquisition of the image had no 
significant effect for any land cover class. 
Having thus explained the climatic and phenological effects on 
NDVI, we proceeded to identify temporal trends in NDVI 
values for some land cover classes (Tables 3 and 4). Negative 
time trends were found only in March, for pastures, badlands 
and erosion risk areas, representing a decrease in the NDVI of 
4-8% in the period 1989-2007. Negative time trends were found 
in August for all land cover classes, and showed a similar range 
in the period 1984-2006. The magnitudes of the negative trends 
were similar for all land cover classes with one exception. 
Erosion risk areas showed the highest values (around 8%) in 
both March and August. 
The results of regression analysis enabled interpretation of the 
observed temporal patterns in the NDVI (Fig. 2). The apparent 
upward trend in the NDVI in well-vegetated areas in March can 
be explained by a similar trend in the average minimum 
temperature. A downward trend in the NDVI in erosion risk 
areas was also evident, but was not clearly related to the 
temporal evolution of any climatic variable. 
These results are in agreement with the evolution observed in 
the western Spanish Pyrenees. Vicente-Serrano et al. (2004) 
found a general positive trend in the NDVI for forests and well-
developed vegetated areas, which was related to an increase in 
annual mean temperature, and to patterns of land abandonment 
and natural revegetation processes. In the present study we also 
found a positive trend in the NDVI for vegetated areas, and 
showed that the maximum and minimum temperatures in the 3 
months before the Landsat images were taken exerted an 
opposite influence on the NDVI, and that this effect varied 
during the year. 
The finding that cumulative precipitation had a negative effect 
on the NDVI was puzzling; a positive effect was expected. This 
anomaly can be explained by the facts that i) water availability 
is not a limiting factor for vegetation growth in the study area, 
which receives an average of around 900 mm year-1, 
predominantly in winter and spring; and, ii) the amount of 
precipitation is well-correlated with cloud cover in the region, 
with rainy periods resulting in reduced incoming solar 
radiation, which rises on clear days. It is well known that 
precipitation level ceases to be a limiting factor for vegetation 
growth in humid regions, where competition for space and solar 
radiation is more important. Several studies have documented 
saturation of the NDVI in relation to precipitation in humid 
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areas (Santos and Negrín, 1997). In such regions the typically 
nonlinear relationship between precipitation and vegetation 
activity could explain the absence of a significant positive 
effect, but not the presence of a negative effect, as found in our 
study. However, the second explanation (cloud cover) could 
assist in an explanation of our data. Unfortunately, neither 
cloud cover nor terrestrial incoming radiation time series was 
available, so this hypothesis could not be tested. 
In studies of smaller areas, similar NDVI trends in vegetation 
evolution have been observed, but human impact has been 
included among the explanations. The presence of a residual 
temporal trend in NDVI values following removal of climatic 
influences is usually considered to constitute evidence that 
other factors, such as human land use practices, are affecting 
vegetation activity. In the present study we found significant 
downward trends in all land cover classes in August. Given the 
low intensity of land use in the region, attribution of these 
trends to human causes is difficult. Additionally, positive NDVI 
trends were found in March, which can be explained by the 
positive evolution of minimum temperatures. Thus, an early 
start to the growth period, plus increased vegetation activity 
during spring and early summer, could cause greater stress on 
vegetation in August. Following exclusion of climatic effects, 
downward trends in the NDVI were found in March and August 
for pastures and badland areas, particularly in erosion risk 
regions. This could be a sign of degradation in such areas 
because a decrease in the (already low) vegetation activity in 
the study area has been correlated with soil erosion processes 
(Alatorre and Beguería, 2009). In erosion risk areas the relative 
effect of the temporal trend was greater than the effect of any 
climatic variable, and consequently this land cover type was the 
only class exhibiting an overall downward trend in the NDVI. 
As this land cover class includes very sensitive areas that are at 
risk of loss of all vegetation cover, thus becoming badlands, we 
focused further on factors that have contributed to this 
degradation.  
 
4.3 Spatial distribution of positive and negative NDVI 
trends in erosion risk areas 
 
The downward trend in NDVI for erosion risk areas in March 
and August could not be explained by climatic factors, and 
suggested the involvement of degradation processes including 
active erosion or lateral expansion of existing badlands. This 
possibility motivated a detailed assessment of the spatial 
distribution of NDVI trends in erosion risk areas. 
Following removal of climatic influences, the spatial 
distribution of positive and negative trends in the NDVI of 
erosion risk areas was similar in March and August, indicating 
that the process is quite consistent and not merely attributable to 
seasonal effects (Fig. 7). Negative NDVI trends predominated 
in both images, indicating the occurrence of degradation 
processes in these areas. However, there were regions in which 
positive trends dominated, especially in the March image. The 
proportion of statistically significant trends increased in August, 
because of an increase in stress conditions, which predominated 
in this month. 
Mapping of trend values on a pixel-by-pixel basis enabled 
assessment of the importance of particular topographical 
conditions on the presence of degradation or recovery 
processes. In March a positive but not statistically significant (p 
= 0.283) relationship was found between the NDVI trend and 
elevation (Fig. 8). This may be related to the location of the 
badland areas; these predominate in the bottom of the Eocene 
depression, in contrast to forested areas, which are mainly 
found on slopes. A negative but not significant (p = 0.364) 

correlation was found between the NDVI trend and the slope 
gradient, suggesting an association of steeper slopes with more 
negative trends. This association could be related to the known 
positive influence of slope gradient on the activity of erosion 
processes. Similar results were obtained with the August images 
(Fig. 4), although the relationships with elevation and slope 
gradient were weaker (p = 0.447 and p = 0.416, respectively). 
 

 
 
Figure 7. Spatial distribution of the NDVI trends for March and 

August in erosion risk areas after climatic forcing was 
accounted for: sign of temporal trend (above) and significance 

(below). 
 

 
 
Figure 8. Correlation between the NDVI trends for March and 

August in the erosion risk areas and topographic variables (after 
climatic forcing was accounted for). Results are shown for a 

random sample containing 10% of the original pixels. The black 
dots indicate pixels with statistically significant trends. 

With respect to the potential solar radiation, stronger positive 
correlations with NDVI trends were found in both the March (p 
= 0.133) and August (p = 0.0345) image series, suggesting that 
degradation processes were preferentially occurring on shady 
(north-facing) slopes. This is consistent with previous research 
on the topographical signature of badlands in the Spanish 
Pyrenees, which has revealed that such regions occur 
predominantly on shady slopes (Alatorre and Beguería, 2009), 
and are associated with mechanical weathering processes 
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related to frost and thawing cycles, which are stronger on north-
facing slopes (Nadal-Romero et al., 2007). Our results show 
that the topographic influences on recovery processes are 
opposite in well-vegetated areas compared to regions 
undergoing erosion processes. 
 
 

5. CONCLUSIONS 

We analyzed the temporal evolution of vegetation activity on 
vegetated and degraded surfaces in a small area of the central 
Spanish Pyrenees over the period 1984-2007. Two map series 
of the normalized difference vegetation index (NDVI) were 
obtained from a series of homogenized Landsat TM and 
Landsat ETM+ images for the months of March and August. 
This enabled analysis of the spatial and temporal dynamics of 
vegetation activity in well-vegetated areas (forests and dense 
scrubland) and degraded areas affected by erosion processes 
(badlands and risk erosion areas). Temporal NDVI trends were 
identified for each land cover class using multivariate 
regression analysis, which incorporated the time evolution of 
climatic factors (precipitation, and minimum and maximum 
temperature). Seasonal differences were expected in the spatial 
pattern of vegetation activity and vegetation recovery 
processes, as a consequence of the climatic seasonality of the 
region and the large differences in water availability between 
spring and summer (vegetation in the latter season is commonly 
affected by a high level of water stress). The results obtained 
could have been affected by the heterogeneity of land use and 
the nature of land covers selected, because this mountainous 
area is complex and exhibits great spatial diversity. 
Nevertheless, at the Landsat image spatial resolution (30 m), 
both land cover and land use were well-represented in the maps. 
Assignment to class based on the most representative category, 
by surface area, in a 30 m pixel size could introduce some 
errors, but it was necessary to guarantee an effective spatial 
comparison between the NDVI dataset and categorical 
information. Moreover, the results were spatially consistent, 
and clear NDVI patterns that coincided with the spatial 
distribution of land use and land cover were evident. In 
summary, this study demonstrated that, in a representative 
mountainous area of the central Spanish Pyrenees, there has 
been a significant increase in vegetation activity in the last 24 
years, which is largely explained by an increase in the 
minimum temperature. Conifers and deciduous forest have 
shown the greatest increase in vegetation activity, whereas the 
increase in activity of grasslands and scrublands has been 
moderate. Moreover, in active erosion and erosion risk areas, 
extreme environmental conditions, which accelerate erosion 
processes, have restricted vegetation recovery processes over 
this time period. 
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