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ABSTRACT: 
 
The overall objective of this work is to provide maps based on the spatial organization of built-up areas and to achieve the 
comparative spatial analysis of built-up areas on east of Algiers in 1985 and 1996. Landsat TM images from both dates are 
processed here in order to characterize spatial and temporal change in built-up areas. Contextual supervised classification method is 
used for built-up areas extraction. Built-up density mapping is provided by local granulometric analysis, based on binary 
mathematical morphology. This method enables the classification of entities according to their granulometric descriptors generated 
by opening granulometries.  
 
 

1. INTRODUCTION 

Built-up areas in Algiers have markedly increasing during the 
last decades. Growth of urban built-up area is accompanied by 
an evolution of land use. Remote sensing images are relevant 
materials for observation and thematic mapping by 
multispectral and multi-textural classification. The objective 
here consists in mapping the spatial organisation of one single 
component of the landscape under study, such as built-up areas. 
Many techniques have been developed for built-up analysis 
(Zhang, 2002; Zha, 2003). Different parameters can be used to 
define the spatial organisation of a set: the size of convex 
entities forming the set, their form or their ordering. Texture is 
the characterizing feature of built-up areas in satellite imagery. 
For some researchers (Matsuyama, 1983; Wood-1996), there 
exist two categories of methodologies to analyze the textures, a 
statistical and a structural one. The former model the textures as 
a random function without a regular structure and are utilized 
for the detailed textures. The structural methods describe the 
textures produced by the regular structure of textural elements 
(Philipp, 1994).  
In the local or global analysis of the texture, the textural 
parameters computed from the local or global statistics of the 
image with grey tone images are used as classifying descriptors. 
However, computation of the texture parameters from grey-tone 
values is not relevant for the feature extracted data used in this 
study. The work presented in this paper is about the 
development of a methodology for the quantification of the 
spatial organization of built-up areas from binary images. Such 
spatial organization is called macro-texture. On a binary image, 
Busch et al. (Busch, 1998) define the feature density as the 
number of pixels matching this feature that are contained in an 
image window. The proposed approach is based on 
mathematical morphology (Serra, 1982; Soille, 2003), and has 
been used successfully in vegetation density mapping 
(Kemmouche, 2004). In a first step, after extraction of the built-
up areas by multi-spectral analysis, we define the descriptors of 
the macro-texture from the concept of the granulometric 

analysis of binary images representing built-up areas. To 
describe the macro-texture around a pixel of the image, we have 
calculated the local granulometric density over a window 
centred on the pixel. The result of this granulometric 
computation is a vector associated with each pixel and new grey 
level images generated.  
In a second step, all the pixels of the original, described by the 
macro-texture parameters are classified by the K-means method 
to produce the final map, which can be considered as a map of 
the density of the built-up areas. The method has been applied 
to map built-up areas density from satellite data on east of 
Algiers in 1985 and 1996. Such maps are efficient tools to study 
the spatial dynamics of built-up areas.  
The paper is organized as follows. In section II, the 
classification of satellite data with high spatial resolution from 
urban areas is described. The proposed mathematical 
morphology approach to built-up areas density mapping is 
discussed in section III. Experimental results are given in 
section IV. 
 

2. BUILT-UP AREAS EXTRACTION  

In this section image analysis methods used for extraction of 
built-up areas from Landsat images are described. The first part 
is devoted to image processing adapted to urban areas 
classification from multispectral images, and the second part 
describes built-up areas extraction. Landsat images 
corresponding to seven band multispectral mode (Thematic 
Mapper) were explored over eleven-year period. 
 
2.1 Classification of urban areas from satellite data  

There are many different approaches to classifying remotely 
sensed data. They all fall under two main topics: unsupervised 
and supervised classification. Supervised classification methods 
are two kinds: punctual or blind methods and contextual 
methods (Pieczynski, 1989; Richards 1993). Punctual 
classification methods are conventional classification 
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techniques which classify each pixel independently by 
considering only its observed intensity vector. The result of 
each method has often a “salt and pepper” appearance 
characterizing misclassification. It means that intensity vector is 
insufficient and then leads to incorrect classification of pixels. 
In particular of remotely sensed data, adjacent pixels are related 
or correlated, both because imaging sensors acquire significant 
portions of energy from adjacent and because ground cover 
types generally occur over a region that is large compared with 
the size of a pixel. Using coherent contextual information for 
classification efficiency and accuracy in remote sensing has 
long been desired. Contextual information is important for the 
interpretation of a scene. When a pixel is considered in 
isolation, it may provide incomplete information about the 
desired characteristics. However, the consideration of the pixel 
in its context, more complete information might be derived. The 
basic idea of spatial context is that the response and class of two 
spatially adjacent pixels are highly related. For example, if (i, j) 
and (m, n) are two neighbouring pixels and if (i, j) belongs to 
class k, then there is a high possibility that pixel (m, n) also 
belongs to the same class k. Therefore, the decision for a pixel 
is taken based not only on the observation at (i, j) but also on all 
observations at (m, n) where (m, n) is neighbour of (i, j). Among 
contextual methods, the most widely applied to remote sensing 
images is the Markov random Field (MRF) approach , which 
has given very promising results (Schistad  1999a; Schitad 
1996b, Khedam 2001). MRF is given as the best 
methodological framework to describe the correlation of 
neighbouring pixels.  
 
2.2 MRF contextual classification model 

We assume that a classified image X and observed data Y are 
realisations of stochastic processes X and Y, respectively. 

{ }K21 Y ..., ,Y ,YY =  are multispectral data observed 

through K spectral bands and are supposed to be acquired on a 
finite rectangular lattice ( ){ }Ss1 :ji,sW ≤≤== , s is the 
site of the ijth pixel and S is lattice's area. The multispectral 
data can be described with { }Ss1 yY s ≤≤=  ,  where 

{ }K
ssss yyyy  ..., ,2 ,1=  is a feature vector observed on the site 

s. Our goal is to find the optimal classified image 

{ }Ss xxX  ..., ,* =  based on the observed data Y. Each site of 
the segmented image is to assigned into one of M classes; that 

is, { } M..., 2,  1,xs =  where M is the number of classes 
assumed to be known in supervised classification process. This 
optimisation is executed from the view point of the maximum a 
posterior (MAP) estimation as follows: 

 
( ){ }YXPargmaxXX

X
MAP

Ω∈
==*     (1) 

 
Where Ω is labelled configurations set. Following Bayes 
theorem, equation (1) becomes: 
 

( ) ( )
( ) 








=
Ω∈ YP

XPXYP
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X
MAP            (2) 

 
The modelling of both class conditional distribution P(Y/X) and 
prior distribution P(X) becomes an essential task. P(Y) is the 
probability distribution of the observed data and doesn't depend 

on the labelling X. Note that the estimate (2) becomes the pixel–
wise non–contextual classifier if the prior probability doesn't 
have any consequence in formulating (2). P(Y/X) is the 
conditional probability distribution of the observation Y given 
the labelling X. A commonly used model for P(Y/X) is that the 
feature vector observed Ys is drawn from a “Gaussian 
distribution”. For a Markov random field X and so, according 
to the Hammerslay-Clifford theory, P(X) can be expressed as a 
Gibbs distribution with “Potts model” as energy function 
model. The global MAP estimate given by equation (1) is 
equivalent to the minimisation of the followed a posterior 
global energy function: 

 
( ){ } min arg

Ω 
 YX U X

X
MAP

∈
=     (3) 

 

Once MAP classification problem is formulated as an energy 
minimisation problem, it can be solved by an optimisation 
algorithm. Among the most effective algorithms for 
optimisation in the framework of image MRF modelling are 
Simulated Annealing (SA) (Geman, 1984) whose the 
computational demands are well known and Iterated 
Conditional Modes (ICM) (Besag, 1986) which is a 
computationally feasible alternative of the SA with a local 
minimum convergence of the energy function. To use ICM 
algorithm, global minimisation energy function of equation (3) 
must be transformed on the followed local minimisation energy 
function:
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Where xsµ  and 
sx∑  are class sx  are respectively mean vector 

and covariance matrix of class xs estimated during training 
process. β is a regularisation parameter and is frequently user 
specified. δ is Kroeneker symbol calculated on the 
neighbourhood Vs of site s.  
 
ICM algorithm can be resumed on five steps as follows: 
Step 1: Estimate statistic parameters set ( xsµ ,

sx∑ ) from the 

training samples of each class from M classes 
Step 2: Based on xsµ  and 

sx∑ , estimate an initial 

classification using the non-contextual pixel-wise maximum 
likelihood decision rule. We use the first term of equation (4) 

Step 3: Choose an appropriate value of β, an appropriate shape 
and size of neighbourhood system Vs and an appropriate 
convergence criterion. 

Step 4: Perform the local minimisation defined by equation (4) 
at each pixel in specified order: update ys by the class xs that 
minimises equation (4) 

Step 5: Repeat step (3) until convergence. 
 
2.3 Built-up area extraction from classified urban areas 

The described algorithm is applied to classify satellite images 
of the selected region of interest. Multispectral and 
multitemporal images were acquired in 1985 and 1996 by 

In: Wagner W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7A
Contents Author Index Keyword Index

95



 

ETM+ sensor of Landsat-7 satellite. The images cover the 
north-eastern part of Algiers (Algeria). The RGB compositions 
of these two images are given on figure 1. Six thematic classes 
dominate the study site: Dense Urban (DU), Bare Soil (BS), 
Less Dense Urban (LDU), Vegetation (V), Clear water (CW), 
and Pollute Water (PW). Using a 2-D scatterogram of ENVI 
software, data samples are selected automatically from each 
class for training and testing the proposed classifier. The MRF 

contextual classification results (8-connexity and β = 0.75) are 
shown on figure 2. Statistical assessment of these results 
relatively to the considered test data gives an appreciate KHAT 
parameter of 91.6% for data acquired on 1985 and 90.2% for 
data acquired on 1996. 
 

 

a   b 

Figure 1. RGB composition of ETM+ images for 1985(a) and to 1996(b) scenes 
 

a   b 

Figure 2. MRF classification result for 1985(a) and to 1996(b) scenes 
 
From the obtained classified images (Figure 2), built-up area is 
extracted using a simple masking operation. Except dense urban 
(DU) class, all the other classes (BS, LDU, V, CW, PW) are 
masked which means that except DU pixels, all other pixels are 
assigned label “0”. 

The resulting binary images are presented in figure 3 (a and b) 
for both dates 1985 and 1996.  
 

 

a            b 

Figure 3. Built-up areas extracted from TM scene corresponding 1985(a) and to 1996(b) 
 

 

3. GRANULOMETRIC ANALYSIS FOR 
QUANTIFICATION OF THE BUILT-UP DENSITY 

The process of built-up areas density mapping is organised in 
two parts. In the first one, granulometric analysis is computed 

on binary images with built-up areas in order to define the 
macro-texture parameters. In the other part, a density map is 
built by automatic classification of granulometric images.  
 

      Dense Urban 
      Less Dense Urban
      Vegetation 
      Bare Soil 
      Clear Water 
       Pollute Water  
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3.1 Granulometric analysis on binary images 

A binary image can be described as a set of the Euclidean space 
2R . Such a set consists of many subsets, which are the 

connected components of the image. We choose here a 
criterion, which is the size distribution of the subsets in order to 
perform the textural analysis of the set. It is obtained by global 
transformations and measurments on the image. This analysis 
called Granulometric analysis is very similar to quantitative 
analysis of soil granulometry by sieving and weighting. The 
concept of granulometry for Euclidean set analysis was 
introduced by Matheron (Matheron, 1967) as a new tool for 
studying porous media. The principle of binary morphological 
granulometric size distributions was conceived by Matheron 
(Matheron, 1975) as a way to describing image granularity. The 
sieving of grains within the image was accomplished by a series 
of morphological openings with convex structuring element of 
increasing size. 

A series of openings BOλ  with a family of structuring 
elements 1B , 2B , .... nB , is a granulometry if it satisfies the 
following axiom: 
 

ji BB OOjiji ≥⇒≤∀ ),(     (6) 
 
Many parameters are provided by granulometric analysis, such 
as granulometric distribution. In order to assess the size 
distribution of the connected components of a set X , we use 
the method of granulometry by opening with a convex 
structuring element B . It consists in a successive application 
of morphological openings on the set X  using an increasing 
structuring element B . As the size of the structuring element 
B  increases, more and more details in the image are 
suppressed. The connected components, which are smaller than 
B , are eliminated. By increasing the size λ  of B , the 
elements of size )1( −λ  are successively eliminated as though 
they were sieved. Computation of the area of elements 
suppressed at each opening step on the whole image leads to the 
evaluation of the size distribution )( XGλ  of the set X , 
which is: 
 

( )[ ] )()()()( XAXOAXAXG Bλ
λ −=    (7) 

 
where, )(XA  indicates area on the initial image and 

( ))(xOA Bλ  is the area of the set X  opened by structuring 

element of size λ .  
Experiments such as studies on porosity of rocks from thin 
section images (Serra 1982) show that, in case of finite 
sequence of openings (i.e. for finite values of λ ), the 
granulometric density is more relevant than the granulometric 
distribution for providing-g efficient descriptors of the size of 
the components of the binary image. The granulometric density 

)(Xg λ  of a binary image 2RX ⊂  relative to a convex 

structuring element B  is defined as:  
 

( ) ( )[ ] )()()()( )1( XAXOAXOAXg BB +−= λλ
λ   (8) 

 
Granulometric density )(Xgλ  represents the fraction of total 

area of X that is rejected between two successive openings of 
respective radius λ  and )1( +λ . It provides a statistical 

evaluation of the area of the components of X : the maxima of 
)(Xg λ  indicate that there are a high proportion of subsets of 

X  having a radius inferior to λ .  
This analysis generates a finite and homogeneous set of 
quantitative descriptors )(Xgλ  that can be easily used to 
quantify the density. 

 
3.2 Computation of macro-textural descriptors 

The application of granulometric analysis has focused on taking 
local granulometric density around individual pixels. The use of 
local granulometric analysis to define texture descriptors was 
introduced by Dougherty et al (Dougherty, 1992; Chen, 1992). 
Rather than computing granulometric density across an entire 
image, as the global granulometry, pixel counts are only taken 
locally in windows about each pixel, thereby generating local 
granulometric density at each pixel: for each pixel of the binary 
image the local granulometric density )(Xgλ  was measured 
over a window centred on the pixel P  at each stage of the 
granulometry. 
This value is computed for the windows )(PF  around all the 

pixels P . The resulting texture representation is a vector 
{ })(PVi

. The texture variables describing a pixel P  will be 

{ } Iii PV ,.....,2,1)( =  where, 
 

))(()( PFgPV ii =     (9) 
 

))(( PFgi  is the value of the local granulometric density 
computed inside the window )(PF  centred on pixel P  at 
opening step i . 
I is the size of B  such that all the pixels of )(PF  are 

eliminated after the opening by IB . 

By this way, each pixel P  of the binary image is described by 
the I  values of Vi  where, Ii ,....,2,1= . Local granulometric 
densities for all the pixels of the binary image were computed 
and results were reassembled to form an image. Such a 
processing is performed for Ii ,....,2,1=  then I  gray-tone 
images are generated. This set of images will then be used as 
input for the classification step. 
Seven images of granulometric density were obtained by this 
way. An example is shown on figure 4, which corresponds to 
the image of the granulometric density of size 1=λ  
computed from the binary images of built-up areas of figure 3.  
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     a               b 

Figure 4. granulometric density images computed from binary images of built-up in figure 3 
 
 
3.3 Built-up density mapping from macro-textural 

indicators 

In order to obtain a built-up density map, we applied 
granulometric image processing and produced I gray tone 
images from binary images of built-up areas extracted on 
section 2.3. The map is then obtained by a multi-channel 
classification on density ganulometric images. An unsupervised 
classification of each pixel is performed by a K-means method 
(Diday, 1974). Classification of macro-texture at a pixel P is 
based upon the descriptor vector of granulometric densities at P. 
The ‘macro-textural descriptors’ are the input variables for the 
classification process. The result is a k-colours image. Each 
class is interpreted according to the mean granulometric density 
values and it contains pixels having similar macro-textural 
signatures. When the neighbouring contains only small 
components, it corresponds to high values for smaller size of 
sieving. At the opposite, it may correspond to high value for 

biggest size of sieving, if the neighbouring contains mainly 
large components. Such an analysis leads to the legend of the 
map in terms of density. The classes are coloured with a red to 
green colour scale to show the progressive decreasing in the 
density of built-up zones. For both dates green colour represents 
the smaller built-up areas while red colour corresponds to the 
bigger areas. 
 
 

4. RESULTS 

We have analysed the macro-texture of the two binary images 
(figure 3 a and b) and mapped the different types of macro-
texture. K-means classification was performed for both dates 
into five classes of built-up density. The result of these maps 
according to the density is represented in figure 5 (a and b). 
 

 

a           b 

Figure 5- Built-up density map computed from binary images in figure 3 for 1985 (a) and 1996 (b) 

 

The five classes show that progressive decreasing density can 
be summarized as follow: 
Class 1: this class corresponds to nearly bare soils. 
Class 2 : this corresponds to sectors of transition between areas 
essentially of bare soil to those with weak density. 
Classes 3, 4 and 5: representing areas from intermediate to 
highest built-up density. 

To differentiate the classes which represent the different 
densities of urban zones in Algiers, it is possible to use the 
notion of covered area over each of the two classes, the mostly 
dense and the least dense, for both dates. The area of the least 
dense class covers only 7.68% of the territory for the year 1996, 
while in 1985 it covers 11.5%. The occupation of the dense 
class represents only 13% in 1985 compared to areas occupying 
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16% in 1996 (see Table 1). The result of these analyses shows 
that the method of quantification of the density of the urban 
space using satellite images makes it possible to separate urban 
zones based on their density. 
 

Class Very dense Least or not dense  
Number of 
structures  17 44 
Number of 
pixels 75034 64567 

Percentage 13 % 11.5 % 

A
lgiers 1985 

 
Number of 
structures  11 29 
Number of 
pixels 93017 43033 

Percentage 16 % 7.68 % 

A
lgiers 1996 

 
Table 1 Comparative result of the highest and lowest dense 

classes 
 

5. CONCLUSION 

The above-described method maps the built-up areas 
organizations by using the macro-textural descriptors of the 
classified images. In the produced map, the patterns are 
characterized by their relative macro-textures. The method has 
been applied for analysing and mapping the spatial variations of 
built-up areas using Landsat TM multispectral data. It provides 
a striking illustration of spatial organisation of urban zones 
from binary images. The produced maps for two dates leads to 
the analysis showing the evolution of built-up density during 
the period under study. The works will be focused in 
reproducing this method at a regional scale, in order to study 
built-up growth on the Algerian littoral by satellite image 
processing.  
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