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ABSTRACT: 
 

 Imaging equations are always considered as the most essential and basic part in photogrammetry and image mapping with remote 
sensing images. Rigourism and conciseness should  be held as their basic characteristics.In this paper,using sensor exterior 
orientation including three lines and two attitude elements as the orientation parameters, new imaging equations for side-looking 
radar or SAR image positioning were derived. The model was based on the distance condition between sensor and object point and 
the azimuth condition of sensor scanning plane including antenna and radar beam center. Three forms of range-coplanarity equation 
were derived, the first form was in the tangent plane rectangular coordinate system, the second was in the geocentric rectangular 
coordinate system, and the third was the range-coplanarity equation with coordinates of image point as explicit function. The model 
could be easily used for side-looking radar and SAR image processing in photogrammetry field. 
 
 
 

                                                                 
*  Corresponding author.  

1. INTRODUCTION 

1.1 The existing radar imaging equations 

（1）Based on Range-Doppler condition model 
 

R-D model is built with distance conditions and Doppler 
conditions, It is F.Leberl model when Doppler frequency value 
is set to zero.[1,2]. 

 
（2）Collinearity equation model: 

The imaging equation based on collinearity equation is 
similar with that based on optical images. This equation uses 
exterior orientation elements as its orientation parameters. 
Generally, Radar images are processed as optical linear array 
sensor images. Some scholars have made a modification on the 
collonearity equation, e.g. G.Konecny et al.[3] put forward an 
improved collinearity equation in which the effect of terrain on 
image point location was taken into account. 

 
（3）Polynomial model: 

The application of general polynomial model in radar 
images is similar to that in optical images. The imaging 
mechanism was not considered in this model, while the 
polynomial model was used in it to convert all images by the 
same translation type. 

 
1.2 The deficiency of R-D and collinearity equation model 
in Image Positioning 

Doppler frequency is directly correlated with the speed of 
the sensor related to the object surveyed. Thouth it is difficult 

to provide Doppler frequency of every object point, they can 
be acquired by assuming that it is a fixed value, or acquired by 
linear or polynomial model in side-looking radar images.  
While the discrepancy of doppler frequency may rapid 
increased by polynomial model in front or squint side-looking 
radar images, it may influence the precision of image 
positioning.  
Researchers in the field of optical photogrammetry expected 

that the same orientation parameters as those in optical image 
orientation could be used in radar image positioning, thus 
collonearity equation could be introduced into radar images 
accordingly. Because of the differences in imaging mechanisms 
between optical and radar sensor, the precision of radar image 
positioning is often low with collonearity equation. Many 
scholars had made modifications on the model[3], but the image 
equations are more complicated. By now, the major application 
of collonearity equation in radar images is geocoding, and 
complex photogrammetric processing such as in stereo 
positioning, especially in block adjustment is still uncommon. 

 
 

2. COPLANARITY EQUATION 

2.1 The principle of orientation with range-coplanarity 
equation 

The model is established with the range-coplanarity equation 
by satisfying the range condition and coplanarity condition. 

The range between the sensor and ground object point is 
equal to the calculation values by image column coordinate 
which is same as range condition in R-D model.  
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All ground points related to one row images and sensor 
antenna  are in same radar beam planarity which is determined 
by the sensor state vector  and attitudes related to shoot time or 
the image row coordinate. 

 
2.2 Analysis on the influence of attitude orientation 

 
 

 
  

Figure 1. The influence of attitude on image positioning. 
 

The effect of independently changing attitude angle on image 
positioning was analyzed as follows. 

 
(1) Rolling angle: The existence of rolling angles resulted in 
changes of the aiming range. But for the same ground point, 
neither the distance between antenna and ground point nor the 
photographing time changed. Therefore, rolling angles barely 
influenced coordinates of the image point (fig.1b). 
 
(2) Pitch angle: The existence of pitch angles made the aimed 
object shift to pre or post direction of airline, the time moment 
when photos were taken on the same ground point changed, and 
the distance between sensor antenna and ground point increased. 
Therefore, the row and line of the ground point in image were 
also changed (Fig.1c). 
 
(3) Yaw angle: The existence of yaw angles made the aiming 
range of antenna rotate, the moment when photos were taken on 
the same ground point changed and the distance between sensor 
antenna and ground point increased. Therefore, the row and line 
of the ground point in image were also changed (Fig.1d). 
 
2.3 Choice of rotation angle system and coplanarity 
equation 

Three Euler angles are not independent parameters because 
the latter rotation angle is formed on the basis of the former one. 
Whether the roll() angle will affect radar imaging positioning 
or not is determined by the adopted rotation angle system. 
There are 6 rotation angle orders. The -- system is 
generally employed in the field of optical imaging positioning, 
however, it is not the best rotation angle system to build the 
equation of radar beam scanning plane. The following 
discussion will provide a proof of this conclusion. 

 
(1) Coplanarity equation derived by -- system  

The rotation matrix which can transform the sensor vector 
coordinate system of -- rotation angle system to attitude 
reference frame is shown as follows: 
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The normal line of the scanning plane is consistent with the 

X axis of sensor coordinate system after the attitude is rotated. 
Thus its unit vector is: 
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And the coplanarity condition equation is: 
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Namely, 
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It is seen that, -- system requires three attitude angles to 
constitute an expression if the scanning plane is to be obtained. 
 
(2) Coplanarity equation derived by -- system: 

The rotation matrix which can transform the sensor vector 
coordinate system of -- rotation angle system to attitude 
reference frame is shown as follows: 
 
 

( ) ( ) ( )A
b Y Z XR R R R    

 
cos cos cos cos sin sin sin sin cos sin cos sin

sin cos cos sin cos
sin cos cos sin sin sin cos sin sin sin cos cos

           
    
           

   
   
     

  (4) 

 
 
The unit vector of normal direction of radar scanning beam 
plane is: 
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And the coplanarity condition equation can be easily obtained: 
 
 
( )(cos cos ) ( )sin ( )(sin cos ) 0X Xs Y Ys Z Zs            (6) 
 

S S 
 S  

X
X 

Y
Y 

P 

S 

X 

Y 
 

X 

Z 

(a) (b) (c) (d) 

In: Wagner W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7B
Contents Author Index Keyword Index

128



 

(3) Coplanarity equation derived by -- system 
In the same way, the expansion of the coplanarity condition 

equation is derived as: 
 
 
( )(cos cos ) ( )(sin cos ) ( )( sin ) 0X Xs Y Ys Z Zs              (7) 
 
 

It can be concluded that the coplanarity condition is 
independent of  angle when the -- or -- rotation angle 
system is used. 

 
 

3.  RANGE-COPLANARITY EQUATIONS IN 
DIFFERENT COORDINATE SYSTEMS 

3.1 The imaging equation in tangent orthogonal coordinate 
system 

It is suitable for airborne or small area spaceborne radar 
images to orient in tangent orthogonal coordinate system. 
Thereinafter, imaging equations and image processing model 
will be derived based on the scanning plane confirmed by --
 system. 

The distance equation based on range-coplanarity equation is 
the same as the one based on range-Doppler model. For slant 
range images, the equation is as follows: 
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Thus, the range-coplanarity equations are obtained: 
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3.2  Imaging Equation in Geocentric Orthogonal 
Coordinate System (GOCS) 

The origin O of orbit coordinate system is the exposure 
station in the sensor orbit. The mathematic definitions of three 
axes in the coordinate system are as follows: 
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The normal vector of the scanning plane is: 
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And the coplanarity condition equation is: 
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Thus, the range- coplanarity equation in GOCS is: 
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3.3 The Range-coplanarity Equation with Coordinates of 
Image Point as Explicit Function 

In order to express the above equation as a function of 
coordinates of the image point, the left-side of the coplanarity 
equation of the formula (9) is multiplied by a function F, with 
the value of coplanarity equation still being 0. Let F be: 
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Where f is called equivalent focal length whose value does 
not affect the tenability of the equation, but affects the number 
of iterations while the equation is solved as well as the fixed 
weight of the observed values.  f can be obtained by the 
following formula according to the geometric relation among 
pixel size, ground resolution and focal length: 

 
 

 0Hs
f

GSDx


                                                (15 ) 

 

where μ0 is the value of equivalent pixel, Hs is the height 
of the sensor, and GSDx is ground resolution of 
corresponding azimuth of the pixel. 

Meanwhile, the range equation of the formula (9) is also 
transformed into a function of y, that is,   the range-coplanarity 
equation of SAR image positioning with coordinates of image 
point (x,y) as the explicit function can be obtained:  
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(16)   
 
 
Similarly, the range-coplanarity equation of explicit function 

of coordinates of image point in the geocentric coordinate 
system can also be obtained.  

It is concluded from the above equation that the mature 
method based on the collinearity equation model of optical 
images can be easily applied in the processing of 
photogrammetric data of SAR images. 
 
 
4. THE CORRECTION AND GEOCODING OF RADAR 
IMAGERY  

4.1 The preprocessing of attitude angles 

The -- system is adopted in the R-Cp model this paper, 
while generally -- system is adopted in the original attitude 
measurements. Before three values of attitude angles in -- 
system are used, they should be converted into the values in -
- system. 
Since different attitude systems have the same translation 
matrix, that is: 
 
 
 R(,,)=R(,,)                                                        (17) 
 
 
Set R(,,)=[aij],（ i,j=0,1,2），and aij is matrix element 

which is obtained from formula(1).  
Thus, ,, value of -- system can be calculated by aij. 
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4.2 Calculation of coordinates of ground point using image 
point 

The coordinates of ground point can be obtained using the 
corresponding coordinates of the image point in combination 
with distance condition, coplanarity condition and earth 
ellipsoid equation. The coordinate（X Y Z）can be acquired 
by the following three equations: 
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（Where 0yRj j M R 
，Rj is the slant range of the object 

point, j is the column coordinate,H is geodetic altitude） 
According to the least squares method, the coordinate (X, Y, 

Z) of the ground point can be solved iteratively. 
 

4.3 Refinement of Orientation parameters [4] 

The range-coplanarity equation of formula (16) is linearized, 
therefore the error equation can be obtained: 
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Where f..  represents linear coefficient  and l. represents 

constant. 
 
Correction model of observation data of exterior orientation 

elements expressed by low order polynomial of time parameter 
t : 
 
 

2
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In order to overcome the singularity of normal equation and 
satisfy adjustment with  sparse control points, combined 
adjustment error equations can be formed using EO observing 
data along with virtual observing values of R-Cp: 
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   Where Vy,Vx,Vb,Vc are corrections of range equation, 
coplanarity equation, polynomial model parameters of EO lines 
and attitudes, respectively; b,c are polynomial coefficients for 
exterior orientation model.  

The above formula can be incorporated as: 
 
 

V=BX-L ......  P                                                               (23) 
 
 

The solutions of orientations are： 
 
 

X=(BTPB)T(BTPL)                                                           (24) 
 
 

5. EXPERIMENT 

The experimental material was an ALOS/PALSAR image 
(70Km×60Km, with pixel resolution of 3.189m in velocity 
direction and 9.368m in range direction), covering the 
mountainous areas in Shanxi province in the west of China. 
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There were 21 image points with ground points coordinates 
surveyed from 1:10,000 scale relief map. 

 
5.1 Experiment 1:  Direct Geocoding to the Earth Ellipsoid 

The ephemeris and attitude data acquired from 
supplementary file of the image were used, and Gauss 
projection was also adopted. 

 
Figure2.Direct geocoding to the earth ellipsoid 

 
Since the misaligned angle of sensor axis relative to satellite 

body axis was not available to the public, the three attitude 
angles were all set to 0; meanwhile the DEM data were used 
due to significant change of the terrain. The precision of direct 
geocoding was acquired by comparing coordinates of 21 
homonymy points from geocoding image and the relief map 
points, and the results were listed in the “direct geocoding” 
column of table 1. 

The results also indicated that all the check points had 
obvious systemic errors both in azimuth and range directions. 

 
5.2 Experiment 2: Orthophoto correction with sparse 
GCPs and DEM data. 

In this experiment, two surveying points were selected as 
control points (distributed on the top right and bottom left 
corners of the image) and 19 as check points so as to refine the 
image orientation elements, and the images were corrected with 
refined orientation elements and DEM data. 

Through comparing calculation results and the known data of 
surveying object, errors of ground control points (GCPs) and 
check points (CPs)  were listed in the “Orthophoto correction” 
column of  table 1. 

 

 
Table 1   The statistics of precision of check points 
 
 

6. CONCLUSIONS 

 
The collinearity equation model of radar images has such 

shortcomings as poor rigorousness and practicality; Range-
Doppler model does not apply to the existing processing 
algorithms of photogrammetric data. With elements of exterior 
orientation as the orientation parameters, in this study a new 
imaging equation of radar image was constructed ---Range-
Coplanarity equation. The imaging equation reflected the 
imaging mechanism of the radar images in the direction of 
range and the direction of orientation, and manifested the 
attribute of the image point coordinate as  independent observed 
value of photogrammetry so that the positioning of radar image 
are able to easily adopt the mature algorithms of 
photogrammetric data processing of optical image.It also has 
simple form and requires less orientation parameters than R-D 
model and collinearity equation. 

In the years past, techniques of sensor positioning and 
attitude determination technique had been greatly developed. 
With the utilization of them, the image mapping without GCPs 
will become a trend in future. Therefore, this image equation 
will bring convenience for radar image rectification, stereo 
positioning, block adjustment, and InSAR baseline calculation 
in photogrammetry. At present, related studies are still being 
kept on by us. 
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Exp content Direct 
Geocoding 

Orthophoto  
Correction 

Unit: (pixel) 21CPs 2GCPs 19CPs 
RMS_x(azimuth) 3.53 0.44 1.26 
RMS_y(range) 4.71 0.40     1.27 
RMS_xy 5.88 0.59 1.79 
MAX_error(x) 7.07 0.11 3.72 
MAX_error(y) 5.77 -0.12 2.97     
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