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ABSTRACT: 

 

This work discusses the application of the cascade, multitemporal classification method based on fuzzy Markov chains originally 

introduced in (Feitosa et al. 2009), over a set of IKONOS  images of urban areas within the city of Rio de Janeiro, Brazil. The 

method combines the fuzzy, monotemporal, classification of a geographical region in two points in time to provide a single unified 

result. The method does not require knowledge of the true class at the earlier date, but uses instead the attributes of the image object 

being classified at both the later and the earlier date. A transformation law based on class transition possibilities projects the earlier 

classification to the later date before combining both results. While in (Feitosa et al. 2009) the fuzzy Markov chain-based method 

was evaluated over a series of medium resolution, LANDSAT images, in this work very high resolution images were processed. 

Additionally, while the target area of the previous work was characterized predominantly by agricultural use, in this work an urban 

area was the subject of classification. The results showed that the performance of the multitemporal method was consistently superior 

to that of the monotemporal classification of the study area, and confirmed the robustness of the fuzzy Markov chain-based method 

with respect to sensor characteristics and target sites. 

 

 

                                                                 

*  Corresponding author. 

1. INTRODUCTION 

Sequences of Remote Sensing images of the same geographical 

area acquired at different points represent a valuable source of 

information that can be used to improve the accuracy and 

reliability of classification-based image analysis.  

 

Most traditional multidate image classification methods can be 

regarded as “post-classification” approaches (Weismiller et al., 

1977), which are decisively dependent on the accuracy of the 

initial classifications. More powerful alternatives, called 

“cascade-classification” approaches (Swain, 1978) use all the 

information contained in the image sequence, trying to explore 

the correlation contained in the temporal data sets. 

 

Feitosa et al. (2009) presented a detailed overview of the most 

relevant efforts towards automatic cascade multitemporal 

schemes found in the literature. These attempts include 

probabilistic methods, methods based on neural networks and 

multi-classifier approaches. 

 

A first attempt towards a fuzzy cascade classification technique 

can be found in (Mota et al., 2007). That method is restricted to 

applications where the true class of the object being classified at 

an earlier time is known. Feitosa et al. (2009) described a new 

fuzzy cascade multitemporal classification model, explicitly 

based on fuzzy Markov chains, in which object features other 

than the true classification are used as the information from the 

earlier date. In the later method, before the classifications of 

two images at two dates are combined, the fuzzy classification 

at the earlier date undergoes a temporal transformation that 

projects it onto the later date. 

 

This work discusses the application of the cascade, 

multitemporal classification method introduced in (Feitosa et al. 

2009), originally applied over an agricultural over a set of 

IKONOS II images of urban areas within the city of Rio de 

Janeiro, Brazil. 

 

 

2. FUZZY MARKOV CHAINS 

This section describes briefly the concept of Fuzzy Markov 

Chain (FMC). A complete and more general presentation about 

this technique and the related concepts may be found in 

(Avrachenkov and Sanchez, 2002). 

 

In this work we consider images acquired at dates t0+t∆t, where 

t0 is some stipulated initial time, ∆t is a given time interval, and 

t is any integer number. For simplicity the date t0+t∆t will be 

denoted from this point on as time t, and t0+(t+1)∆t as time t+1, 

for t ∈ Ζ.  

 

Let Ω = {ω1, ω2,…, ωn} be a set of n distinguishable land-

use/land-cover (LULC). A binary fuzzy relation can be defined 

on the Cartesian product Ω×Ω represented by a n×n transition 

matrix Τ = {τij}. The symbol τij stands for the possibility that an 

image object belongs to the class ωi ∈ Ω at time t and to the 

class ωj ∈ Ω at time t+1, with 0 ≤ τij ≤ 1, for i,j = 1,…,n. 

 

This can be pictorially described by a class transition diagram 

(Figure 1), a weighted directed graph whose nodes correspond 

to classes and links to plausible class transitions between t and 

t+1.  Each link is labeled with the class transition possibility τij. 

For simplicity links with τij = 0 are not drawn.  
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Figure 1. Class transition diagram with four classes. 

 

The vector tα = [tα1,…,tαn ] with 0 ≤ tαi ≤ 1 represents, for a 

particular image object, the fuzzy classification defined over  Ω 

at time t, where tαi denotes the membership value of the object 

to class ωi (for all ωi ∈ Ω) at time t. It is further assumed that tαi 

is a function of attribute values of the image object at time t. 

 

Based on the fuzzy label vector tα  and on the transition matrix 

Τ, the Fuzzy Markov Chain Model estimates the class 

membership values, represented by the vector 
t+1β = [t+1β1,…,t+1βn ] for the same object one time unit later by 

applying the following formula: 
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(1) 

 

for i,j = 1,…,n. The symbols T and ⊥⊥⊥⊥  represent respectively a t-

norm and a s-norm. 

 

The transition law introduced in Equation (1) can be expressed 

in a more compact form by the equation below. 

 

Ταβ o
tt

=
+1  (2) 

 

In the expression “A°B”, the symbol “°” denotes a special type 

of matrix multiplication, analogous to conventional matrix 

multiplication, where the product is replaced by a t-norm and 

the summation is replaced by a s-norm operator.  

 

The symbols t+1β and t+1α denote different distributions 

although both refer to the same object at the date t+1. While 
t+1α has been computed based on feature values at time t+1 

without any temporal transition transformation, t+1β is the result 

of applying the FMC transition law,  

Equation (2), upon the membership grades in tα computed on 

the feature values of the image object corresponding to the same 

geographical object at time t.  

 

 

3. MULTITEMPORAL CLASSIFICATION MODEL  

3.1 Problem statement 

 

Let  
t
I and t+1

I denote two co-registered images of the same 

geographical area acquired respectively at dates t and t+1. 

Accordingly, tx and t+1x stand for the feature vectors composed 

of spectral and spatial feature values describing the same 

geographical object respectively in tI and t+1I. We further 

denote with tw and t+1w the crisp label vectors for the object 

being analyzed at times t and t+1. Both tw and t+1w are n-

dimensional unitary vectors of the form [0 … 1 … 0] having 

“1” in its i-th component and “0” otherwise, indicating that the 

object belongs to the class ωi at a particular time. Formally, tw 

and t+1w belong to a n dimensional space ΩΩΩΩ
n, where:  

ΩΩΩΩ
 n = { w = [ w1,…,wn] | wi ∈ {0,1} 

for all i = 1,…,n  and  ||w|| = 1} 
(3) 

 

The multitemporal classification problem treated in the present 

work consists of identifying the vector t+1w for each image 

object, based on the feature vectors tx and t+1x, in other words, 

it is about finding a function M of the form:  

 
t+1w = M (tx,t+1x) (4) 

 

3.2 General classification model 

 

The terms monotemporal and multitemporal will be used 

hereafter to designate classifiers whose inputs refer respectively 

to a single date or to multiple dates.  

 

The outcome of the multitemporal classifier can be viewed as 

the fusion of the outcome of two monotemporal classifiers. Let 

the first monotemporal classifier be represented by a function 
LC that computes membership values for the object being 

classified at the later time t+1 based exclusively on the feature 

values at time t+1, extracted from image t+1I. The 

monotemporal classifier LC produces a n-dimensional fuzzy 

label vector denoted by t+1
α = [t+1α1, 

t+1α2,…,
t+1αn ], where t+1αi 

stands for the membership of the image object assigned by LC to 

the class ωi, for all ωi ∈ Ω and for at least one i, t+1αi ≠ 0. So, 
LC can be viewed as a function of the form:  

 
t+1α = LC (t+1x) (5) 

 

A second monotemporal EC is applied to the object feature 

vector tx at time t. Analogously to the first monotemporal 

classifier, it generates a fuzzy label vector tα, formally: 

  
tα = EC (tx) (6) 

 

Since t
α refers to the membership distribution at the earlier time 

t and our interest is in the classification at the later time t+1, the 

FCM transition law is applied to infer the membership values at 

time t+1 based on the membership values at t. Thus, if Τ is the 

class transitions matrix representing the class transitions in two 

consecutive instants, we may estimate the classification at time 

t+1 by combining equations (2) and (6), yielding:  

 
t+1β = EC (tx) ° Τ (7) 

 

The two fuzzy label vectors t+1α and t+1β are then combined in 

the next step by an aggregation function F to form a 

multitemporal fuzzy label vector t+1µ = [t+1µ1,…,t+1µn ] given 

by: 

 
t+1µ = F(t+1α, t+1β)= F[LC (t+1x) , EC (tx) ° Τ] (8) 

 

The final step is the defuzzification, performed by a function of 

the form:  

 

H: [0, 1]n
→ Ω

n (9) 

 

that transforms the fuzzy label vector t+1µ into a crisp one. 

Putting it all together, the multitemporal classifier M is given 

by Equation (10). 

 
t+1w = M(t+1x, tx)= H{ F[LC (t+1x) , EC (tx) ° Τ] } (10) 
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3.3 Particularization of the classification model 

 

FMC models may be built using any t-norm and s-norm 

composition. We favor the max-product composition, since it 

leads to a simple multitemporal classification model with an 

intuitive interpretation,. Thus Equation (1) takes the form: 
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for i,j = 1,…,n.  

 

The defuzzyfication step is carried out by a hardening function 

H that selects the fuzzy set with the highest membership grade, 

formally: 

 

[w1,…,wn] =w= H(µ)= H([µ1,…, µ n]), where 

{ }
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The aggregation function F is the product of corresponding 

elements of the input fuzzy vectors. Thus, 

 
t+1µ =F(t+1α, t+1β)= [t+1α1

t+1β1,… , t+kαn 
t+1βn ] (13) 

 

Putting it all together, the multitemporal classifier assigns the 

image object to the class ωi ∈ Ω at time t+1, for which 
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holds. 

 

3.4 Estimating transition possibilities 

 

The estimation of transition possibilities basically selects the set 

of possibility values that maximizes the classification accuracy 

computed upon a given training set. 

 

The estimation procedure consists of finding the set of 

transition possibility values T={τij} that maximizes the selected 

accuracy function G, for the selected image objects S of image 

objects at the later date (the training set) and for the selected 

monotemporal classifiers. This is formally expressed by: 
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(15) 

  

The computation of transition possibilities defined in Equation 

(17) involves an optimization procedure. The classification 

model introduced in the previous sections is actually not bound 

to any particular parameter optimization technique. In this 

work, the average class accuracy was used as accuracy function, 

and a Genetic Algorithm was the optimization technique used to 

estimate transition possibilities (Schmiedle et al., 2002).  

 

 

4. EXPERIMENTS 

 

The experiments described in the following sections were 

designed to evaluate the proposed method over a set of high 

resolution IKONOS II images. The experiments aimed at 

comparing the outcome of the multitemporal classification with 

that of the monotemporal classification of the later image. We 

also investigated the performance of the method tuning the 

performance of the earlier monotemporal classifier, as described 

in Section 4.4. The idea was to investigate how the method 

behaves with different (increasing) performances of the earlier 

monotemporal classifier. 

 

The data set used in all experiments is described in the next 

section. Afterward, the design of the particular monotemporal 

classifier that composes the multitemporal scheme in the 

experiments is presented. The following two sections describe 

respectively the monotemporal classifier design and the 

optimization technique used to estimate transition possibilities. 

 

4.1 Description of the data set 

 

The test site corresponds to a 14.4 km2 area, situated on the 

north face of the Tijuca National Park, within the city of Rio de 

Janeiro, an important Atlantic Forest reminiscent. The test-site 

is a subset of the area of interest of the PIMAR Project (Remote 

Environmental Monitoring Program), which aims at monitoring 

the suppression of rainforest on conservation units inside the 

municipality of Rio de Janeiro through high resolution optical 

remote sensing images (PIMAR, 2010). 

 

This area was selected as test-site because of the noticeable 

sprawl of informal dwellings over legally protected natural 

areas. Moreover, the area contents various instances of all land 

cover classes considered by the PIMAR Project. 

 

Two pan-shaped, orthorectified IKONOS II images were used 

in the experiments. The images actually take part of two stereo 

pairs, each pair acquired on the same orbit, with different 

elevation angles. The orthorectification was performed using 

digital elevation models derived from each stereo pair. For each 

year the image with the highest elevation angle was chosen and 

submitted to orthorectification.   

 

It is important to note that because of the time of the year the 

images were acquired – March 2008 (late summer) and June 

2009 (late autumn) respectively –, they present quite different 

illumination conditions, with an important presence of clouds in 

the 2009 image. No radiometric correction or equalization was 

performed over the orthorectfied images.  

 

 
Figure 2. Area of the test-site in Rio de Janeiro municipality. 

 

The orthorectified IKONOS II images were segmented using 

the multiresolution segmentation algorithm proposed by Baaz 

and Shäpe (2000), through the Definiens Developer 7 software. 

The parameters chosen for the segmentation procedure were 
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such that the resulting segments were small in size, as defined 

by the low scale parameter value, giving priority to color 

homogeneity instead of coherently shaped segments. The idea 

was to absolutely avoid that the segments disrespect the border 

between two different land cover objects. 

 

Parameter Value 

Scale 30 

Color 0.9 

Shape 0.1 

Compactness 0.5 

Smoothness 0.5 

Layer weights (bands 1, 2, 3 and 4) 1,1,1,1 

 

Table 1. Segmentation parameters used in the experiments. 

 

 

All segments generated from the two images were duly, visually 

classified by specialists. Table 2 describes the land-use classes 

considered. Actually, shadow segments were also classified as 

such, but they were not considered in the experiments. 

 

After classification, all segments from each class in 2008 were 

merged to the adjacent segments of the same class, generating 

larger area segments. Then, only the segments from 2009 that 

fell completely inside the large 2008 segments (generated from 

the merging procedure) were selected.  

 

For those selected segments (generated through the 

segmentation of the 2009 image), feature attributes were 

calculated from each of the two images. The feature extraction 

procedure was also implemented on the Definiens Developer 

software. The features extracted for each segment were: mean 

values of the four spectral bands and the textural entropy feature 

(for all bands in all directions).  

 

The basic idea of the procedure described above was to produce 

a set of segments with class labels for 2008 and 2009, and with 

two sets of attributes, extracted respectively from the 2008 and 

2009 images. Table 3 shows the number of segments assigned 

to each class, in each year and the class transitions observed 

from 2008 to 2009. 

 

Label Class Description 

Rock (ω1) Rock Exposed rock (granite) formations. 

Field (ω2) Grass field Grass fields naturally formed over 

thin soil or created by 

anthropogenic activities. 

Urban (ω3) Urban Area Constructed area (buildings, roads, 

etc.) including bare soil areas 

Trees (ω4) Arboreous 

Vegetation 

Individual or clusters of trees 

(inside urban areas or not). 

 

Table 2. LULC classes considered in the esperiments. 

 

 

 2009     

2008 Rock  Field Urban Trees Total 

Rock 188 10 0 1 199 

Field 11 421 66 153 651 

Urban 0 9 5594 220 5823 

Trees 1 194 390 33947 34532 

Total 200 634 6050 34321 41205 

 

Table 3. Class transitions from 2008 to 2009. 

4.2 Monotemporal classifier design 

 

A simple design is adopted in our experiments for the earlier 

(
t
C) and later (

t+1
C) monotemporal image classifiers. Feature 

vectors x are built for each segment by stacking the attribute 

value of the segments (recorded at a specific date). It is assumed 

that all classes ωi can be appropriately modelled by a Gaussian-

shaped membership function MFωi(x) given by the formula 

below: 
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(16) 

 

for ωi ∈ {rock, field, urban, trees}, where iϖ
x and iϖ

Σ  

correspond respectively to the mean and to the covariance 

matrix of the class ωi.  

 

4.3 Optimization procedure 

 

The transition possibility values were estimated, as mentioned 

in Section 3.4, by a Genetic Algorithm (GA) using as objective 

function the average class accuracy. The genes were the 

transition possibility values. The GA design used in the 

experiments was the same as in (Feitosa et al., 2009). 

 

4.4 Simulating monotemporal classifiers with tunable 

performance 

 

The multitemporal classification based on fuzzy Markov chains 

is evaluated for for monotemporal classifiers with varying 

performances. Such evaluation scheme can be done by defining 

a simulated monotemporal classifier t+kC* with tuneable 

performance, that is, for all image objects, we have: 

 
t+kα* = m t+kW +(1-m) t+kα (17) 

 

where t+kW is the true crisp label vector, t+kα is the fuzzy label 

vector from the monotemporal classifier, and m is a mixture 

factor that takes values in the interval [0,1]. For m = 0, the 

simulated monotemporal classifier is identical to the 

monotemporal classifier described in the previous section; for 

m = 1, it is equal to the ideal classifier.  

 

The monotemporal classifiers, t+kC, are replaced in our 

experiments by the simulated monotemporal classifier, t+kC*, 

and a continuous variation of m permits to observe how the 

relative performance of the monotemporal classifiers affects the 

accuracy of the multitemporal model. It is worth anticipating at 

this point the low performance of the real monotemporal 

classifier described in Section 4.2 in comparison to state of the 

art classification approaches (see experiment results in the next 

section). This is convenient in view of the objective of the 

analysis since it permits to assess the multitemporal models for 

a wide range of monotemporal classification performances.  

 

4.5 Results 

 

The benchmark for the analysis reported in the subsequent 

sections is the outcome of the monotemporal classifiers that 

take part of the multitemporal scheme. As the object of 

comparison is the crisp classification of the later image 

segments, a defuzzification step was performed over the output 

of the fuzzy monotemporal classifier, simply assigning to each 
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segment the class for which it obtained the highest membership 

value. 

 

In a sequence of experiments using the average class accuracy 

to estimate transition possibilities, the training set was built in 

the following way. The image objects were first separated in 

groups according to the class transition they undergone in two 

consecutive dates. To estimate the parameters of the 

monotemporal classifiers as well as the transition possibilities 

as described in previous sections, approximately 25% of the 

objects in each group are randomly selected to form the training 

set. The remaining 25% of the objects were used to evaluate the 

method in terms of average class accuracy at the later date. 

 

Figure 2 shows the performance achieved by both the 

monotemporal and multitemporal. The points in the graph 

represent averages values computed over 30 executions of the 

same experiment, each time with a distinct random selection of 

training and testing objects. Each point is associated to a 

specific mixture factor m. 

 

As it was expected, the average outcome of the monotemporal 

classifier for 2008 in the various experiments remain almost 

constant, varying from 75% to 76% (Figure 3). It is also 

noticeable that the classification performance of the 

monotemporal classifier for 2008 is considerably better that that 

of the monotemporal classifier for 2009, even when the mixture 

factor is equal to zero, even though the design of the earlier and 

later monotemporal classifiers are the same. That may be 

credited to the fact that there are a considerable amount of 

shadows in the 2009 image, basically due to the different solar 

elevation angles in the two images. Although the completely 

shaded areas (segments) were not considered in the 

experiments, the effect of the shadows on the segments that 

were not discarded may have influenced the capacity of the 

classifier to discriminate among the classes of interest. The 

human interpreted can, however, easily adapt to those 

conditions.  

 

Anyhow, it is interesting to observe that the multitemporal 

classification method could benefit from the better 

monotemporal classification from 2009 (even when the mixture 

factor m is equal to zero) and improve the classification 

accuracy by approximately 6.6% (Figure 4) – from 76% to 81% 

(Figure 3). 

 

As the performance of the earlier monotemporal classifier 

improves (for 2008), influenced by the increasing mixture 

factor, so does the performance of the multitemporal classifier 

for 2009, reaching an average class accuracy of over 89% – an 

improvement of approximately 16.9% (Figure 4). 
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6,6%
7,2% 7,4% 7,4%

8,9%

11,1%

13,8%

16,9%

4%

6%

8%

10%

12%

14%

16%

18%

0 10-3 10-2.5 10-2 10-1.5 10-1 10-0.5 1

Mixture factor (m)

P
e
rf

o
rm

a
n

c
e
 g

a
in

 (
2
0
0
9
)

0                      10-3 10-2.5 10-2 10-1.5 10-1 10-0.5 1

6,6%
7,2% 7,4% 7,4%

8,9%

11,1%

13,8%

16,9%

4%

6%

8%

10%

12%

14%

16%

18%

0 10-3 10-2.5 10-2 10-1.5 10-1 10-0.5 1

Mixture factor (m)

P
e
rf

o
rm

a
n

c
e
 g

a
in

 (
2
0
0
9
)

0                      10-3 10-2.5 10-2 10-1.5 10-1 10-0.5 1

 
Figure 4. Performance gain in the classification of the 2009 image brought by the multitemporal classification. 
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5. CONCLUSION 

 

In this paper, we applied the model proposed in (Feitosa et al., 

2009) on a set of very high resolutionIKONOS II images of 

urban areas within the city of Rio de Janeiro, Brazil.  

 

The results are consistent with the ones presented in (Feitosa et 

al., 2009), where series of Landsat images over an agricultural 

area were subjected to multitemporal interpretation. 

  

The experiments results presented here and in (Feitosa et al., 

2009) indicate that the multitemporal classification design 

based on fuzzy Markov chains generally brings an accuracy 

gain in relation to the monotemporal approach. Furthermore, it 

has been shown that the more accurate the information coming 

from the earlier date, the higher is its contribution to the 

multitemporal classification performance. In fact, the fuzzy 

Markov chain method seem to be particularly beneficial 

whenever there is information regarding the earlier date (t) that 

is significantly more accurate than the available information 

about the later date (t+1).  

 

We should recall that the assumption underlying the proposed 

multitemporal classification model is the existence of a 

significant temporal correlation between the data sets. If an 

application does not meet this condition, the method is not 

expected to work properly at all. 

 

Future research should tackle a number of other important 

issues. Experiments should be performed with more time points. 

In this case, conditions on the length of the Markov chain could 

also be investigated. Broader series of experiments with other 

geographic regions and types of images should also be carried 

out.  

 

It would be also interesting to investigate other optimization 

algorithms, since genetic algorithms spend too much processing 

time and do not guarantee that the global optimum solution is 

found. A possible candidate for this optimization task could be 

some sort of least squares-based algorithm. 
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