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ABSTRACT:

Soil moisture retrieval from SAR images using semi-empirical or physically-based backscatter models requires surface roughness pa-
rameters, generally obtained by means ofin situ measurements. However, measured roughness parameters often result in inaccurate
soil moisture contents. Furthermore, when these retrieved soil moisturecontents need to be used in data assimilation schemes, it is
important to also assess the retrieval uncertainty. In this paper, a regression-based method is developed that allows for the parameteriza-
tion of roughness by means of a probability distribution. This distribution is further propagated through an inverse backscatter model in
order to obtain probability distributions of soil moisture content. About 70% of the obtained distributions are skewed and non-normal
and it is furthermore shown that their interquartile range differs with respect to soil moisture conditions. Comparison of soil moisture
measurements with the retrieved median values results in a root mean square error of approximately 3.5 vol%.

1 INTRODUCTION

Soil moisture is a key variable in various earth science disciplines
such as hydrology, meteorology and agriculture. The models that
are mostly used in these disciplines generally require spatially
distributed soil moisture as an input. As the microwave backscat-
tered signal from a bare soil surface is partly influenced by the
soil moisture content, radar remote sensing can be used to meet
these high spatial resolution requirements. Currently, only ac-
tive microwave sensors, of which the Synthetic Aperture Radar
(SAR) is the most common imaging configuration, are able to
capture small-scale soil mositure patterns.

Several backscatter models exist that calculate the backscattered
signal, given soil moisture, soil surface roughness and incidence
angle, polarization and wavelength of the radar signal. Soil sur-
face roughness refers to the unevenness of the earth’s surface due
to natural processes or human activities, and is generally statisti-
cally described by the root mean square (rms) height, the correla-
tion length and an autocorrelation function (Ulaby et al., 1982a).
Unfortunately, soil surface roughness parameters are difficult to
measure as several experiments have shown that roughness pa-
rameterization depends on profile length (Callens et al., 2006;
Davidson et al., 2000; Ogilvy, 1988; Oh and Kay, 1998) and the
measurement technique (Mattia et al., 2003a), meaning that dif-
ferent roughness parameter values can be obtained for the same
surface. These problems occur because natural surfaces behave
as a self-affine fractal surface (Shephard and Campbell, 1999;
Dierking, 1999; Shepard et al., 2001), while most of the backscat-
ter models assume a stationary random surface.

Amongst the various methods that exist to overcome this param-
eterization problem, Su et al. (1997) suggested the use of an ef-
fective roughness parameter, which is estimated by means of re-
motely sensed data in combination with soil moisture measure-
ments. This parameter then replaces thein situ roughness mea-
surements for soil moisture retrieval from successive SAR acqui-
sitions. This concept is applied successfully in different studies
(Verhoest et al., 2000; Baghdadi et al., 2002, 2004, 2006; Rahman

et al., 2007;Álvarez-Mozos et al., 2008) and will also be used in
this study.

SAR retrieved soil moisture maps are often used in hydrological
models or in data assimilation schemes. For the latter applica-
tions, the Ensemble Kalman filter (Evensen, 2006) is frequently
used to assimilate remotely sensed hydrologic information (Re-
ichle, 2008). This method relies on the value of the observed vari-
able and assumes a normal distribution, for which the mean value
and the variance of the observed variable are required. There-
fore, retrieval algorithms should provide not only soil moisture
content, but also a quantification of its uncertainty.

The research questions to be answered in this study are:

1. How can the uncertainty on effective soil surface roughness
be quantified?

2. How does this uncertainty influence the uncertainty on re-
trieved soil moisture?

For this purpose, all other sources of uncertainty were ignored,
such as uncertainty on the backscattered signal, uncertainty in-
duced by vegetation cover or by the backscatter model.

2 METHODOLOGY

The methodology used in this study is based on a relationship that
was found between effective roughness parameters and backscat-
ter coefficients. A linear regression model was used to model this
relationship (Lievens et al., 2010) and can furthermore be used
to quantify the uncertainty on the modeled soil roughness as a
probability distribution. Using a Monte Carlo method to prop-
agate this probability distribution through an inverse backscatter
model, a probability distribution for soil moisture content is ob-
tained.
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Figure 1: Location of La Tejerı́a experimental watershed

feb 27 mar 06 mar 23 mar 30          apr 02
0

10

20

30

40

50

mvmeas [vol%]

Date

Figure 2: Soil moisture contents (mvmeas) measured at different
acquisition dates in 2003

2.1 Study site and data

The studied watershed, La Tejerı́a, is situated in the north of Spain
(Figure 1), has a humid, submediterranean climate and consists of
clayey and silty clay loam textures. It is almost completely cul-
tivated, with an emerging cereal crop covering most of the fields
during the experimental period (February - April 2003). A more
detailed description of the study site is given byÁlvarez-Mozos
et al. (2006).

For each acquisition day, field average soil moisture contents were
calculated for fifteen seedbed fields based on measurements with
a Time Domain Reflectometry (TDR) instrument with 11 cm
probes (Figure 2). For a detailed description of the sampling
method we refer tóAlvarez-Mozos et al. (2006).

Next, five C-band, HH polarized RADARSAT-1 SGF scenes were
acquired over the experimental region during spring 2003, at low
incidence angles (13◦-29◦). This configuration has proved to
be particularly well suited for soil moisture research over ce-
real canopies (Ulaby et al., 1982b; Biftu and Gan, 1999; Mat-
tia et al., 2003b). The images have a range resolution of 20 m or
24 m and an azimuth resolution of 27 m, from which field average
backscatter coefficients were calculated. Furthermore, in order to
reduce the effect of the local incidence angle on the backscatter
coefficients, these coefficients were normalized correspondent to
a reference incidence angle, according to Lambert’s law for op-
tics (Ulaby et al., 1982b; Van Der Velde and Su, 2009):

σ0
l,n = σ0

l
cos2 ·θref

cos2 θ
, (1)

whereσ0
l,n is the linear normalized backscatter coefficient [-],σ0

l

is the linear measured backscatter coefficient [-],θref is the refer-
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Figure 3: Normalized backscatter coefficients (σ0
n ) obtained at

different acquisition dates in 2003

ence incidence angle [◦], in this case chosen to be 23◦ andθ is the
local incidence angle [◦]. The resulting field average backscatter
values are shown for every acquisition date in Figure 3.

2.2 Integral Eqation model

The single scattering approximation of the Integral Equation
Model (IEM) (Fung et al., 1992; Fung, 1994) is the most widely
used scattering model for bare soil surfaces (Moran et al., 2004).
It allows for the calculation of backscatter coefficients based on
bare soil surface roughness parameters, soil dielectric constant,
local incidence angle, wave polarisation and frequency. The IEM
describes surface roughness by three complementary parameters:
rms height (s), correlation length (l), and an autocorrelation func-
tion. Davidson et al. (2000) and Callens et al. (2006) demon-
strated that for smooth to medium rough agricultural bare fields
this autocorrelation function is best represented by an exponential
function.

The conversion of the dielectric constant to the corresponding soil
moisture content is performed by means of the four-component
dielectric mixing model of Dobson et al. (1985), for which the
residual and saturated soil moisture content used
throughout this study are set to 3 vol% and 45 vol% respectively.

It is expected that the emerging crops on the fields influence the
results of the inversion of the IEM, since this was developed for
bare soil conditions. However, the canopies were only weakly
developed and the incidence angles were low, which are reasons
to believe that the effect of the vegetation is minimal (Ulaby et
al., 1982b; Mattia et al., 2003b). Furthermore, simulations by
Lievens et al. (2010) using a water cloud model (Attema and
Ulaby, 1978; Pŕevot et al., 1993) indicated that the attenuation
of the backscatter by the cereal canopy was to a large extent com-
pensated by a direct canopy contribution. This led to insignifi-
cant vegetation corrections within the relative radiometric accu-
racy of the RADARSAT observations,i.e. +/-1 dB (Srivastava et
al., 1999). Therefore this study will not take into account a pos-
sible influence of the crop cover on the backscattered signal.

2.3 Effective roughness

The idea of using effective roughness parameters was first intro-
duced by Su et al. (1997). The effective roughness parameters are
estimated using backscatter and soil moisture observations. They
replacein situ measurements of soil surface roughness for the re-
trieval of soil moisture content from successive SAR images.

In case of the IEM, two effective roughness parameters need to
be defined: rms height (s) and correlation length (l). Lievens
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Figure 4: Effective correlation lengths (leff) obtained with the
IEM for the different acquisition dates in 2003
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Figure 5: Dependence of the effective correlation length (leff) on
the normalized backscatter coefficient (σ0

n )

et al. (2010) observed that for a large number of different (s,l)-
combinations a very small soil moisture retrieval error is obtained.
They furthermore concluded that a fixed value fors is best used
on which basis the corresponding value forleff is determined.
Therefores is fixed at 1.0 cm andl ranges from 1.0 cm to 120 cm
in the inversion of the IEM. The value resulting in the lowest ob-
servation error,leff, is retained. Figure 4 shows the effective corre-
lation lengths corresponding to the observed normalized backscat-
ter coefficients on every acquisition date.

A comparison of Figures 3 and 4 shows that the behaviour of the
field average effective correlation lengths is strongly related to
the normalized backscatter coefficients. A plot of the values of
leff versusσ0

n , as presented in Figure 5, reveals this relationship
can be modeled by a linear regression model:

lmod = a · σ0
n + b + ǫ, (2)

with lmod the modeled correlation length,a andb regression pa-
rameters andǫ a random error term, usually considered to be
normally distributed. The values of parametersa andb are also
shown in Figure 5. Lievens et al. (2010) performed an exten-
sive cross-validation, indicating the robustness of this regression
model, however, latter exercise will not be discussed in this work.

The linear regression model can then be further used to estimate
the uncertainty around the predicted value. This uncertainty is de-
scribed by a t-distribution with varianceσ2, calculated as follows
(Neter et al., 1996):

σ2 =

∑n
i=1 e2

i

n − 2

[
1 +

1

n
+

(σ0
n,h − σ̄0

n )2∑n
i=1(σ

0
n,i − σ̄0

n )2

]
, (3)
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Figure 6: Example of a probability distribution for modeled cor-
relation length (lmod)

with n the number of observations,ei the difference between
the ith observed and modeled values ofleff, σ0

n,h the normalized
backscatter coefficient for which the regression model is applied,
σ0

n,i the ith observed normalized backscatter coefficient andσ̄0
n

the mean of all observed normalized backscatter coefficients. As
an example, Figure 6 shows the t-distribution for an arbitrary
value ofσ0

n , from which it can be seen that this distribution is
symmetric around the mean value. The obtained distribution for
lmod is propagated through the inversion of the IEM by means
of a Monte Carlo method. To this end, 1000 values oflmod are
randomly sampled from the distribution and further used as in-
put to the IEM. This results in 1000 corresponding soil moisture
contents, representing the histogram of soil moisture.

3 RESULTS AND DISCUSSION

3.1 Soil moisture histogram

Figure 7 shows the histogram of the obtained soil moisture val-
ues for the arbitrary example. The histograms are cut off at a
minimum soil moisture content of 3 vol% (residual soil moisture
content) and a maximum of 45 vol% (saturated soil moisture con-
tent), which can influence the mean value. Furthermore, it should
be noticed that this example histogram is asymmetric, skewed to-
wards higher soil moisture values and therefore not normal. This
was confirmed using a Lillifors normality test (Lilliefors, 1967)
for about 70% of the obtained histograms. The remaining his-
tograms were found to be normal, which mostly occurred at low
soil moisture values (< 25 vol%). Consequently, using the mean
and standard deviation in further applications as representatives
for the obtained non-normal soil moisture histograms, may lead
to a distorted view of the underlying distributions. Furthermore,
the mean value and standard deviation of the normal histograms
may be influenced by the fact that the histograms are cut off at
the residual and saturated soil moisture content. Therefore it is
recommended to use the median value and the interquartile range
divided by 1.35 (converted IQR), which are insensitive to the val-
ues of residual and saturated soil moisture content.

3.2 Retrieved median soil moisture content

Figure 8 shows a scatterplot of the retrieved versus the observed
soil moisture values, where the error bars represent the converted
IQR of the resulting histograms. It can be seen that low soil mois-
ture contents (< 20 vol%) are slightly overestimated. Overall,
a root mean square error (RMSE) of 3.51 vol% is obtained be-
tween the measured soil moisture content and the median of the
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Figure 7: Example of a histogram of retrieved soil moisture con-
tent (mvretr)
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Figure 8: Retrieved (mvretr) versus measured soil moisture
(mvmeas), the error bars represent IQR/1.35

retrieved histograms. Furthermore a Nash-Sutcliffe model effi-
ciency (Nash and Sutcliffe, 1970) of 0.63 was found, indicating
the model predicts much better than the mean value of the ob-
servations. It is furthermore observed that the uncertainty on the
retrieved soil moisture contents increases with the soil moisture
content, which is in accordance with the observations of Verhoest
et al. (2007).

4 CONCLUSIONS

This study presents a methodology that allows for the
retrieval of soil moisture content and its uncertainty based on
modeled roughness. Soil surface roughness, in terms of effective
correlation length (leff) is modeled based on its relationship with
normalized backscatter coefficients (σ0

n ). The uncertainty on the
modeled correlation lengthlmod is described by a t-distribution,
which is then sampled following a Monte Carlo method. The
randomly drawn values are propagated through the inversion of
the IEM and a corresponding histogram of soil moisture contents
is obtained.

Results show that most of these histograms are skewed and non-
normal and that a representation of these histograms by means
of the mean value and the standard deviation may lead to a dis-
torted view of the underlying distribution. This is particularly
important when retrieved soil moisture content and correspond-
ing uncertainty (represented by the mean and standard deviation)
are to be used in data assimilation schemes, such as the Ensemble
Kalman filter, which rely on normality assumptions of the vari-
ables of interest. It would be better to apply the median value and

converted IQR in the data assimilation framework. It is further-
more observed that the interquartile range changes with varying
soil moisture conditions, larger interquartile ranges are obtained
for higher soil moisture contents.

Future research is required to test whether soil moisture content
with a variable uncertainty has a large impact when used in a data
assimilation framework.
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