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ABSTRACT: 
 
This study evaluates the performance of two fundamentally different approaches to achieve sub-pixel precision of normalised cross-
correlation when measuring surface displacements on mass movements from repeat optical images. In the first approach, image 
intensities are interpolated to a desired sub-pixel resolution using a bi-cubic interpolation scheme prior to the actual displacement 
matching. In the second approach, the image pairs are correlated at the original image resolution and the peaks of the correlation 
coefficient surface is then located at the desired sub-pixel resolution using three techniques, namely bi-cubic interpolation, parabola 
fitting and Gaussian fitting. Both principal approaches are applied to three typical mass movement types: rockglacier creep, glacier 
flow and rock sliding. Their performance is evaluated in terms of matching accuracy and in reference to the images of the resolution 
they are expected to substitute. Our results show that intensity interpolation using bi-cubic interpolation (first approach) performs 
best followed by bi-cubic interpolation of the correlation surface (second approach). Both Gaussian and parabolic peak locating 
perform weaker. By increasing the spatial resolution of the matched images by intensity interpolation using factors of 2 to 16, 40% to 
80% reduction in mean error could be achieved in reference to the same resolution original image. 
 
 

1. INTRODUCTION 

Present climatic change shifts geomorphodynamic equilibriums 
and intensifies related mass movement processes such as 
landslides and permafrost creep (Haeberli and Beniston 1998; 
Rebetez et al. 1997). Extension and intensification of human 
activities in areas affected by such mass movements increase 
the probability of connected adverse impacts like natural 
hazards or building stability problems. The consequently 
growing needs for monitoring mass movements are 
complemented by growing remote sensing opportunities for 
doing so. The increasing number of available stacks of multi-
temporal space-borne, air-borne and terrestrial images, and the 
improvements in remote sensing and image processing in 
general significantly enhance the potential for applying 
matching techniques to detect and quantify earth surface mass 
movements from repeat remotely sensed data. All the above 
needs and developments call for continued efforts to improve 
terrain displacement matching methods based on repeat images.  
 
Image matching is a group of techniques of finding 
corresponding features or image patches in two or more images 
taken of the same scene from different viewing positions, at 
different times and/or using different sensors (Zitová and 
Flusser 2003). Image matching is among others used for a large 
variety of applications such as image (co-) registration, stereo 
parallax matching for generation of digital elevation models, 
particle image velocimetry (PIV), or displacement 
measurements. 
 
The group of area-based matching techniques is the most widely 
used method due to its relative simplicity (Zitová and Flusser 
2003). A number of similarity criteria can be used for the 

matching process. Cross-correlation, in particular its normalised 
form which accounts for intensity variations in image 
sequences, is the most widely used due to its reliability and 
simplicity (Lewis 1995). The normalised cross-correlation 
(NCC) algorithm has been used to investigate earth surface 
mass movements such as glacier flow, rockglacier creep and 
land sliding in many empirical studies (Haug et al. 2010; Kääb 
and Vollmer 2000; Scambos et al. 1992).   
 
Although NCC has been documented to be simple and reliable, 
a number of drawbacks have been reported as well: Firstly, its 
precision is, in principle, limited to one pixel, and thus varying 
with the pixel size of the image data used. Secondly, NCC is 
sensitive to noise in the images. Such noise may result in wrong 
correlation maxima leading to mismatches. This problem is 
often partly addressed through image transformation (e.g. 
Fourier) in case of images with low signal-to-noise ratio (Lewis 
1995). Thirdly, NCC is sensitive to significant scale, rotation or 
shearing differences between the images to be correlated (Zhao 
et al. 2006). Due to this limitation, NCC is recommended in 
cases where the movement is mainly due to translation with 
limited rotation, scaling or shearing. A way to partly overcome 
this limitation of NCC is to orthorectify the images used before 
the matching (Kääb and Vollmer 2000).  Fourthly, for the 
measurement to be reliable the displacement has to be greater 
than the mean error of the image (co-)registration. Improving 
NCC precision improves displacement accuracy twofold: firstly, 
it reduces image registration error; secondly, it improves the 
matching accuracy directly.  
 
To achieve sub-pixel precision in NCC, three approaches can be 
used. One is to improve the imaging system towards a higher 
spatial resolution. This approach is complicated by a number of 
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financial and technological limitations. The second option is to 
resample the image intensity to a higher spatial resolution 
through interpolation. The third option is to interpolate the 
cross-correlation surface after the matching process to a higher 
spatial resolution in order to locate the correlation peak with 
sub-pixel precision. Since the intensity interpolation approach 
and the correlation interpolation approach are both generic, and 
independent of image resolution, they are subject to this study. 
A number of investigations have explored these two approaches 
applied to medicine (Althof et al. 1997), mechanics 
(Westerweel 1993; Willert and Gharib 1991; Zhou and Goodson 
2001), and stereo matching and motion tracking (Karybali et al. 
2008; Yamaguchi et al. 2003).  However, there is no study 
available that compares the relative performance of the two 
approaches when measuring the displacement of earth surface 
mass movements from repeat images.  
 
Many earth surface mass movements such as landslides, glacier 
flow, and rockglacier creep are characterized by displacement 
rates of the order of magnitude of cma-1 or ma-1 which is often 
less than the spatial resolution of the space-borne or air-borne 
imagery typically available for their measurement. Sub-pixel 
accuracy of image matching algorithms, here NCC, has 
therefore a large potential to improve the signal-to-noise ratio of 
the measurements. Using NCC as an example, this study 
compares the performance of two fundamentally different 
approaches to reaching sub-pixel precision in mass movement 
detection and measurement from repeat remotely sensed 
images.  
 
In the method section of this contribution we describe the 
dataset used, ways of reaching sub-pixel precision, 
quantification of matching accuracy, and our experimental set-
up. In further sections the matching results and their accuracy 
are presented and discussed. Short conclusions terminate our 
contribution. 
 

2. METHODS 

2.1 Image data and pyramid 

For this study, three different types of mass movements were 
selected: land sliding, glacier flow, and rockglacier creep. The 
selection of these mass movement types was made based on 
their frequency in high mountain areas. Three temporal pairs of 
images each covering one of these types of earth surface mass 
movements were used (Table 1). These images were accurately 
orthorectified prior to displacement matching. Additionally, one 
image pair was created from one of the original glacier images 
after artificially inducing a two-dimensional translation of 15 
pixels (9 pixels in the X direction and 12 pixels in the Y 
direction). Since this pair was made from just one original 
image and the movement applied was only translation the pair 
serves as a control data set as it is free of noise from temporal 
surface changes, changes in imaging condition, registration 
errors and geometric distortions.  
 
Better understanding the influence of spatial resolution on the 
accuracy of image matching requires images of the same area 
taken at the same time, under the same flight and ground 
conditions, but using sensors with different spatial resolutions. 
Such conditions are not easily met. Instead, resampling of the 
original images was used here. In our study, different optical 
satellites were simulated by down-sampling the original high-
resolution aerial ortho-images to five levels lowering the 
resolution by factors of 2, 4, 8, 16 and 32. One image pyramid 

with six levels each was finally obtained for each of the image 
pairs. The down-sampling was performed using the MATLAB 
module ‘imresize’ with the relatively most efficient and reliable 
algorithm for this purpose, bi-cubic convolution. The algorithm 
assigns the weighted average of pixel values in the nearest 4 by 
4 neighbourhood (Keys 1981). Although this resampling 
process is slightly different from the pure signal averaging 
happening in the instantaneous field of view of a sensors 
detector cell, we decided to choose bi-cubic convolution 
because most images used for matching will in practice have 
undergone such interpolation during image correction and pre-
processing steps, such as orthorectification (Toutin 2004). 
 

Type  Location  Pixel 
size  

Older  Recent  

Rockglacier Muragl (Swiss)  0.2m 1981  1994  
Glacier  Ghiacciaio del 

Belvedere (Italian)  
0.5m  Sep. 

2006  
Oct.  
2006  

Rock slide  Aletsch (Swiss)  0.2m  1976  2006  
Control 
(Glacier)  

Manually 
translated motion  

0.2m   

Table 1. Brief description of the image data used 

 

2.2 Matching and displacement measurement at 
different pixel sizes 

First, the original high-resolution aerial images were matched 
using the pixel-precision NCC algorithm to determine the 
matching positions and compute the horizontal displacement 
magnitude and direction. These results were considered as 
reference for the accuracy assessment. Mismatches that were 
characterized by low peak correlation coefficients, very large 
displacements in relation to their neighbouring templates, or 
displacements showing distinct upslope movement were 
removed manually. Additionally, displacements less than the 
mean orthorectification error were removed as they are not 
reliably distinct from the error. The orthorectification error 
(offset between the images) was computed by matching stable 
grounds. The computation revealed that a maximum of 1 pixel 
offset exists in each dimension. The positions of the templates 
with valid matches in the original resolution were then used in 
the matching of the coarser resolution images.  
 
Matching and displacement measurement were in a next step 
performed on all resolution levels of the image pyramid pairs 
for all those locations saved from the reference matching. The 
absolute sizes and positions of the reference templates and the 
search windows were kept constant metrically throughout the 
image pyramid by adjusting the number of pixels according to 
the resolution. In other words, the ground area covered by the 
templates remained the same, the respective image resolution 
changed. This was done in order to avoid variations in signal 
content as a result of inclusion or exclusion of ground features. 
The area covered by the images range from 0.25km2 to just over 
3km2. The size of the template was kept at around 26m and 65m 
for the originally 0.2m and 0.5m resolution images, 
respectively. The size of the search window was kept at around 
102m and 265m for the originally 0.2m and 0.5m resolution 
images, respectively, so that it certainly included the expected 
maximum surface displacement.  
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2.3 The sub-pixel precision approaches 

2.3.1 Intensity interpolation 
The coarse resolution images within the above-computed 
resolution pyramids were back-interpolated to different finer 
resolutions using the MATLAB-based ‘imresize’ module. Again 
the bi-cubic interpolation was used for the same reason. After 
such back-interpolation, the NCC algorithm was applied using 
the same templates and search windows as used in the original 
reference image pairs. The interpolation is done on the fly for 
each reference template and search window, and not for the 
entire image before the matching process. This was done due to 
memory restriction by MATLAB. 
  

2.3.2 Similarity interpolation 
Bi-cubic interpolation. To find the sub-pixel position, one can 
interpolate the cross-correlation surface to higher resolution 
using two dimensional bi-cubic interpolation algorithms. The 
algorithm uses a two-dimensional cubic convolution of the 
correlation coefficients to the resampled grid. The peak is then 
relocated.  
 
Curve fitting. As an alternative to peak interpolation, one can 
also create a continuous function that optimally fits the 
correlation coefficient data and compute the precise location of 
the peak from the maximum of the function. The challenge is 
that no single function can usually perfectly describe the cross-
correlation surface. However, the fact that the correlation 
surface around its peak often approaches a bell shape can be 
exploited. Therefore, two dimensional polynomial functions can 
approximate the surface. A number of interpolation models 
have been tested in empirical and theoretical researches, 
particularly in particle image velocimetry (PIV), though with 
varying successes (Nobach and Honkanen 2005; Westerweel 
1993; Willert and Gharib 1991). Some of the well performing 
ones will be tested here for mass movement analysis. These are 
parabola fitting and Gaussian fitting, as these have shown 
successes especially in PIV.  
 
In parabola fitting, the shape of the correlation surface is 
assumed to fit two separable orthogonal parabolic curves. The 
location of the ‘actual’ peak is computed by independently 
fitting one dimensional quadratic function and computing the 
location of the peak (Nobach and Honkanen 2005; Westerweel 
1993).  
 
In Gaussian fitting, the bell shape of the correlation surface is 
assumed to fit a 2D Gaussian function (Nobach and Honkanen 
2005; Westerweel 1993; Willert and Gharib 1991). It is 
assumed that the two dimensions are separable and orthogonal. 
Thus, the sub-pixel peak location is calculated separately for the 
two directions by fitting a second-order polynomial to the 
logarithm of the maximum sample and the direct neighbours.  
 

2.4 Evaluation of different levels of sub-pixel detail 
Section 2.3 evaluates which sub-pixel approach performs best in 
improving the precision and accuracy of NCC-based image 
matching. It is also important to know how far sub-pixel 
interpolation of coarse resolution image intensities or the 
correlation surface is able to substitute pixel-level matching of 
images of the corresponding but original resolution. In other 
words, what is the sub-pixel detail at which the interpolation to 
achieve sub-pixel precision can no longer sufficiently substitute 

image of that resolution.  The approach used here to resolve this 
issue is to compute the sub-pixel precision matching at different 
levels of the image pyramid and evaluate its performance in 
reference to the pixel-level matching of images with the same 
but original resolution.  This issue becomes clearer with an 
example. Suppose we want to know the performance of sub-
pixel precision matching at the level of half a pixel. This can be 
achieved by taking an image of, for instance, 8m resolution, 
compute the sub-pixel precision matching to 4m and compare 
the latter sub-pixel performance to the performance of pixel-
level matching of an image with 4m original resolution. Or else, 
take a 4m resolution image, compute its sub-pixel resolution 
matching to 2m and compare the performance of the latter in 
relation to a 2m resolution original image, and so forth 
including the entire pre-processed image pyramid and all 
resolution steps included in it.  
 

2.5 Performance evaluation 

As indicator of accuracy, we used the shift in matching position 
instead of the often-used difference in displacement magnitude. 
The matching positions obtained during the correlation of the 
original images were considered as references. All the matching 
positions at the different coarser or back-interpolated 
resolutions were compared to these reference positions. The 
magnitude of this offset (deviation) is here used as measure for 
the accuracy of the image and algorithm used. The deviation 
between the matching position of the interpolated image and 
that of the same resolution original image is used to assess the 
relative performance of the sup-pixel approaches. 
 

3. RESULTS  

3.1 Displacements of the different mass movement types 
Table 2 summarises displacement statistics for the three mass 
movements investigated. The results are produced from the 
analyses of the original ortho-images after filtering all the 
mismatches. One can well see that the glacier moves very fast 
as compared to the rockglacier and the even slower moving 
rockslide. Figure 1 and Figure 2 present the displacement 
vectors of the three mass movements. Image matching showed 
that all the areas in the scene show non-zero displacements due 
to the presence of systematic image (co-)registration error. 
However, after filtering of the vectors based on the estimated 
overall image (co-)registration error of one pixel, thresholding 
of the correlation coefficients and excluding upslope 
movements, only the remaining vectors presented in the figures 
are considered to be valid and useful as reference.  
 

3.2 Accuracy of the sub-pixel algorithms 
Figure 3 and Figure 4 depict the mean deviation of the matching 
positions against the sub-pixel precisions of each of the sub-
pixel approaches for the control set and the three mass 
movements respectively. The magnitudes of Figure 4 are 
created by averaging the values obtained for the three mass 
movement types as the trend is very similar for all the three. 
Both figures show that interpolation of the image intensity 
before matching results in the best matching accuracy. If one 
looks at the interpolation of the correlation surface, the bi-cubic 
approach follows the intensity interpolation. The curve fitting 
using parabola and Gaussian models perform only better than 
bi-cubic interpolations to one half of the original pixel size.  
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For the real mass movements, there is very little accuracy gain 
by interpolating to lower than 0.1 pixels.  As the result of the 
control shows, when the movement is only translation, the 
magnitude of the deviation is very low. Besides, it seems that, 
for the control set, interpolation to more detail level improves 
the accuracy further.  
 

Mass movement  Mean 
displa
cemen
t (m) 

Maxi
mum 
displa
cemen
t  (m) 

Standard 
deviation 
of 
displacem
ent (m) 

Maximu
m 
velocity 
(ma-1) 

Aletsch Rock 
slide 

1.5 4.2 0.45 0.14 

Muragl 
Rockglacier 

2.4 5.8 1.20 0.45 

Ghiacciaio del 
Belvedere 
Glacier 

12.22 18.83 5.0 226 

Control 7.50 7.50 0 7.50 
Table 2. Summary statistics for the displacement magnitudes 
and average velocity of the mass movements and the 
translation-only control image as estimated from the matching 
of the high-resolution original ortho-images 

 

 
Figure 1. Displacement vectors on the Ghiacciaio del Belvedere 
(Sept – Oct 2001) 
 

 

Figure 2. Displacement vectors on the Muragl rockglacier 
(1981-1994) and Aletsch rockslides (1976 – 2006) from left to 
right respectively.  

 
3.3 Relative performance of the sub-pixel precisions 

Figure 5 shows the mean deviation between the matching 
position of the interpolated image pairs and that of the same 
resolution (but original) reference image pairs plotted against 
sub-pixel precision for the control set.  When the difference 
between the images is only the here-applied translation, sub-
pixel interpolation of the image intensities up to 1/8th of the 
original pixel size prior to matching can perfectly substitute 
images of comparable original resolution. This perfect 
substitution can be achieved by using bi-cubic interpolation of 
the correlation surface only up to 1/4th of the original pixel size. 

For example, a 16m resolution image interpolated to 2m using 
bi-cubic interpolation before matching performs exactly as a 2m 
resolution image pair as long as there is no other source of 
difference between the image pairs than rigid translation.  But 
when the level of detail goes beyond 1/8th, there appears 
deviation between the two. The magnitude of these numbers 
depends, of course, on the translation magnitude applied in the 
control set. However, the test shows the better performance of 
bi-cubic intensity interpolation over the other sub-pixel 
algorithms tested. 
 
For all the real mass movement types (Figure 6), as the 
difference in pixel size between the coarse resolution and the 
reference resolution increases, the deviation of the sub-pixel 
matching position from the matching position of the same (but 
original) image resolution increases regardless of the algorithm. 
This means, not surprisingly, that the sub-pixel algorithm 
resembles images of comparable resolution less and less as the 
sub-pixel detail increases. At every resolution, the mean 
deviation is the lowest when intensity interpolation is used 
before matching followed by the bi-cubic interpolation of the 
correlation surface. The parabola- and Gaussian-based peak 
localisations perform poorer and alike.  This confirms the above 
results.  
  
Remarkably, at a certain level of sub-pixel detail (about 1/16th), 
the deviation between the sub-pixel algorithm and same 
resolution original image gets so high that  interpolating beyond 
that level has no meaningful advantage although the control set 
gives less deviation even at greater level of detail.   
 

 
 
Figure 3  Accuracy of the different sub-pixel precision 
approaches for the control set expressed as the mean deviation 
of the matching positions from that of the reference high-
resolution original ortho-images  
. 
 

 
 
Figure 4  Accuracy of the different sub-pixel precision 
approaches expressed as the mean deviation of the matching 
positions from that of the reference high-resolution original 
ortho-images (averaged for the three mass movement types) 
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Figure 5  Relative performance of the different sub-pixel 
approaches for the control set expressed as the mean deviation 
of the matching positions from that of the same resolution 
original image 
 
 

 
 
Figure 6  Relative performance of the different sub-pixel 
approaches expressed as the mean deviation of the matching 
positions from that of the same resolution original image 
(averaged from the three mass movement types investigated) 
 

4. DISCUSSION 
The results show that intensity interpolation outperforms all the 
other algorithms of similarity interpolation. There can be two 
explanations to this. Firstly, in correlation interpolation the 
positions of the correlation values on which the interpolation is 
based, and which are computed based on coarse resolution 
images, influence the position of the recomputed correlation 
peak. Secondly, the number of pixels in an entity is higher when 
intensity interpolation is applied leading to the suppression of 
noise. Fewer numbers of pixels in an entity makes the entity 
more susceptible to chance-based, i.e. erroneous matching 
results. This explains the increased difference between intensity 
interpolation and similarity interpolation at very detailed levels 
of sub-pixel precision. 
 
The bi-cubic interpolation scheme that was used for the 
intensity interpolation is known to replicate the reference data 
better than most interpolation schemes (Keys 1981), and it is 
known to approximate the sinc interpolation that is ideal in 
image interpolation (Dodgson 1992). This has led to the fact 
that the images re-interpolated from coarser resolutions were 
found to have high correlation with the aerial images of 
corresponding original resolution. For example, when the down-
sampled rockglacier image of resolutions 0.4m, 0.8m, 1.6m, 
3.2m and 6.4m were re-interpolated to a resolution of 0.2m (1/2 

to 1/32 of a pixel respectively) their global correlation 
coefficients with the reference image of 0.2m resolution were 
0.98, 0.96, 0.93, 0.90 and 0.86 respectively. Although the 
images deteriorate due to resampling noise, they still remain 
well-correlated with the reference image due to the good 
performance of the interpolation algorithm. Correlation is, in 
fact, one of the quality measures of image interpolation 
(Lehmann et al. 1999). 
 
The same interpolation algorithm, bi-cubic, performed best in 
the similarity interpolation approach although not as good as in 
the intensity interpolation. The better performance in 
comparison to the Gaussian and parabola fitting is partially 
ascribed to the reasons explained above. In addition to that, 
parabola fitting is reported in many occasions to have a 
systematic bias known as “pixel locking”, which forces the 
estimated sub-pixel locations to approach integer values 
(Nobach and Honkanen 2005; Prasad et al. 1992). The presence 
of a systematic bias is testified by the fact that both parabola 
and Gaussian fitting could not fully substitute the same 
resolution original images in the case of the control set unlike 
the other two algorithms (Figure 5). Although reports from PIV 
state that Gaussian peak finding does not have that kind of bias 
and performs better (Westerweel 1993; Willert and Gharib 
1991), it performed no better than parabola fitting in the present 
study. We believe the underlying reason is the fact that the 
cross-correlation surfaces of the mass movements cannot be 
perfectly modelled by either parabolic or Gaussian functions. 
The image resolutions used in the present study are not so high 
to be compared to that of particle images used in mechanics 
which is high enough to be approximated by, for example, 
Gaussian. Besides, noise that is present in the images due to 
temporal surface changes and other sources contribute to the 
deviation of the correlation shape from both Gaussian and 
parabolic.  
 
Finally, two important points regarding the size of the matching 
entities: Firstly, in this study the absolute metric size of the 
matching entities was kept constant across image resolutions. 
This means that the number of pixels in each entity varies with 
the pixel resolution, leading to a variable signal-to-noise ratio. 
This was done for the sake of comparison. In reality, the size of 
matching entities will vary with the resolution of the image pair 
to keep a good signal-to-noise ratio.  Secondly, the size of the 
matching entities was kept the same for the entire scene. In 
reality matching entities vary in size.  
 

5. CONCLUSIONS 
This study has clarified a number of questions around the 
relation between accuracy and pixel or sub-pixel resolution 
when matching terrain displacements such as glacier flow, land 
sliding or permafrost creep from repeat optical images by using 
pixel-precision correlation measures, here namely the 
normalized cross correlation (NCC).  That way the study 
contributes, on the one hand, to better exploiting the 
unexploited archives of repeat remotely sensed images that exist 
over actual or potential earth surface mass movements, and on 
the other hand, to better meeting the increasing needs to 
quantify and monitor mass movements, in particular when they 
are accompanied by adverse effects. 
 
This study has in particular evaluated the performance of two 
different approaches to sub-pixel precision in NCC for 
displacement measurement based on repeat images. When sub-
pixel accuracy is aimed for, interpolating image intensities to a 
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higher resolution using bi-cubic interpolation prior to the actual 
image correlation performs better than both interpolation of the 
correlation surface using the same algorithm and peak 
localisation using curve fitting. Correlation peak localisation 
using Gaussian and polynomial algorithms are inferior in such 
applications.  
 
Therefore, we conclude that more precise and accurate 
displacement measurements are obtained by interpolating the 
available images to a higher resolution using bi-cubic 
interpolation prior to matching. In such approaches, one can 
gain over 40% reduction in mean error by interpolating the 
images to up to 1/16th of a pixel. Interpolating to a more detailed 
sub-pixel resolution than 1/16th of a pixel does not add much. 
Or in other words, when matching low-resolution images using 
normalized cross-correlation with intensity-interpolation based 
sub-pixel precision, 40% or better accuracy increment can be 
achieved compared to pixel-precision matching of images in 
reference to the same original resolution as the interpolated one. 
When real low-resolution images are used together with varying 
sizes of the matching entities, as opposed to the approach used 
in this study, even better precision and accuracy might be 
obtained as the noise due to resampling will not be present, and 
template and search window sizes will be adjusted with the 
pixel size.  
 
It should also be noted that although the relative performances 
of the algorithms is expected to be valid at least for other spatial 
domain matching approaches and for other applications, the 
magnitudes given here are strictly only valid for the similarity 
measure and test sites used in this paper. Futher research is 
needed for their validity outside the conditions described in this 
study. 
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