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ABSTRACT: 
 
In several real-world applications (e.g., forestry, agriculture), the objective of change detection is actually limited to one (or few) 
specific “targeted” land-cover transition(s) affecting a certain area in a given time period. In such cases, ground-truth information is 
generally available for the only land-cover classes of interest at the two dates, which limits (or hinders) the possibility of success-
fully employing standard supervised approaches. Moreover, even unsupervised change-detection methods cannot be effectively 
used, as they allow identifying all the areas experiencing any type of change, but not discriminating where specific land-cover tran-
sitions of interest occur. In this paper, we present a novel technique capable of addressing this challenging issue (formulated in terms 
of a compound decision problem) by exploiting the only ground truth available for the targeted land-cover classes at the two dates. 
In particular, the proposed method relies on a partially-supervised approach and jointly exploits the Expectation-Maximization (EM) 
algorithm and an iterative labelling strategy based on Markov random fields (MRF) accounting for spatial and temporal correlation 
between the two images. Moreover, it also allows handling images acquired by different sensors at the two investigated times. Ex-
perimental results on different multi-temporal and multi-sensor data sets confirmed the effectiveness and the reliability of the pro-
posed technique, which provided change-detection accuracies comparable with those obtained by fully-supervised methods. 
 
 

1. INTRODUCTION 

Detecting changes occurring on the Earth’s surface represents 
one of the main applications of satellite remote sensing. Indeed, 
in a variety of different fields and applications (e.g., urban 
planning, forestry, agriculture, disaster management, etc.) the 
employment of multi-temporal satellite data has become essen-
tial for identifying where and (when possible) which types of 
transitions have occurred between two given dates (Jensen, 
2009). 
Generally, change-detection methods are categorized as either 
supervised or unsupervised, depending on the availability of 
suitable prior information (Coppin et al., 2004; Duda et al., 
2000; Lu et al., 2004; Radke et al., 2005; Singh, 1989). 
When an exhaustive multi-temporal ground truth characterizing 
all the land-cover classes over the area of interest at both times 
is available, then, supervised approaches can be applied. These 
types of techniques are generally robust and effective, and al-
low identifying all the land-cover transitions occurred between 
the two considered dates. In this framework, three main ap-
proaches are generally employed: post-classification compari-
son (PCC), supervised direct multi-data classification (DMC) 
and compound classification (Duda et al., 2000; Lu et al., 2004; 
Singh, 1989). 
When no ground truth is available, instead, unsupervised tech-
niques must be used, which allow detecting areas experiencing 
changes (being even capable of separating land-cover transi-
tions of different nature and characterizing their distribution), 
but are unable to provide information on the specific type of 
changes occurred. Several unsupervised change-detection tech-
niques have been presented so far in the literature. Most of them 
are based on image differencing, image ratioing, image regres-
sion, change vector analysis (CVA) and principal component 
analysis (PCA), which all require the selection of proper thresh-
olds for determining changed regions (Coppin et al., 2004; Lu 
et al., 2004; Radke et al., 2005). 
It is worth noting that, in the above described framework, su-

pervised methods represent an ideal approach to change-
detection analysis, since they permit both to identify areas ex-
periencing changes, as well as to reliably determine the associ-
ated land-cover transitions. Nevertheless, their range of appli-
cability is significantly limited by the difficulties in gathering 
exhaustive and accurate ground-truth information for all the 
land-cover classes characterizing each date under analysis. In-
deed, such a requirement is costly, time consuming and not 
always possible or feasible to satisfy. 
However, in several operational change-detection problems the 
main objective is not to characterize all the land-cover transi-
tions occurred in the investigated area, but rather to identify a 
single (or few) targeted land-cover transition(s) of interest. This 
is typical for instance in agriculture, urban planning, or forestry 
applications. In such circumstances, when only one (or few) 
specific land-cover transitions need to be identified, it is rea-
sonable to assume that the collection of ground-truth informa-
tion associated with the only (or few) land-cover class(es) of 
interest at the two considered dates is highly simplified. How-
ever, under this assumption, neither supervised nor unsuper-
vised change-detection techniques can be effectively employed. 
Let us consider for instance the case of two images acquired 
over the same area at different times 1t  and 2t , where the objec-
tive is to identify all the patterns experiencing the targeted land-
cover transitions from class “A” (e.g., forest) to “B” (e.g., urban 
area) under the hypothesis that a ground truth for class “A” at 

1t  and for class “B” at 2t  is available (or can be easily retrieved 
by an operator), respectively. In this context, on the one hand, 
supervised techniques cannot be used, since the lack of an ex-
haustive ground truth characterizing all the land-cover classes at 
the two dates under consideration will not allow a successful 
training of the classifiers. On the other hand, unsupervised 
techniques may allow identifying all the areas experiencing any 
type of change, but not discriminating where specific targeted 
land-cover transitions of interest occur. In this latter case, a 
comparison (e.g., trough a significance-testing approach (Jeon 
and Landgrebe, 1999)) of the labelled samples available for the 
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classes of interest at the two dates against all those identified as 
changed pixels may provide some degree of information on the 
type of land-cover transition, but not with the accuracy and 
reliability provided by fully-supervised approaches). 
In this paper, we formulate this complex issue in terms of a 
compound decision problem (Duda et al., 2000) and propose a 
novel partially-supervised change-detection (PSCD) technique 
capable of exploiting the only prior knowledge available for the 
specific land-cover classes of interest at the two times (thus 
avoiding the need to rely on exhaustive ground-truth informa-
tion for all the classes), while providing accuracies comparable 
with those of fully-supervised methods. Moreover, it has the 
great advantage of being sensor-independent, which allows 
selecting at each date the set of sensors and features most suit-
able for characterizing the targeted class(es) of interest. 
The proposed method aims at estimating at each date the prob-
ability density function (PDF) and the prior of both the class(es) 
of interest and the remaining unknown land-cover classes (for 
which no ground truth is available) represented as a single un-
known information class. In particular, PDFs are approximated 
by a mixture of suitable basis functions whose free parameters 
are determined employing the iterative Expectation-
Maximization (EM) algorithm (Dempster et al., 1977). Changed 
pixels are then identified using an iterative labelling strategy 
based on Markov random fields (MRF) (Solberg et al., 1996) 
which allows taking into account both spatial and temporal 
correlation between the two images, as well as properly con-
straining the probability estimates. 
For demonstrating the capabilities of the proposed method, 
extensive experimental trials have been carried out with differ-
ent combinations of multispectral, hyperspectral and SAR data. 
Obtained results confirmed the effectiveness and the reliability 
of the proposed technique, which provided very promising re-
sults. In particular, accuracies are comparable to those achieved 
with the PCC method in the presence of an exhaustive ground 
truth for each image both considering the maximum likelihood 
(ML) classifier (Richards and Jia, 2006), as well as support 
vector machines (SVM) (Cristianini and Shawe-Taylor, 2000). 
 
 

2. PROBLEM FORMULATION AND ASSUMPTIONS 

For the sake of simplicity we will describe the problem and the 
proposed method under the assumption of a single targeted 
land-cover transition of interest. The extension to the case of 
multiple transitions is straightforward. 
Let us consider two I J×  co-registered remote-sensing images 

1 1 ,
, 1}I J

ij i j=={xX , 11 D
ij ∈x \ , and 2 2 ,

, 1{ }I J
ij i j== xX , 22 D

ij ∈x \ , referring 
the same geographical area at times 1t  and 2t , respectively, 
where 1

ijx , 2
ijx  represent corresponding feature vectors (even 

derived from different sets of sensors at each date, respectively, 
and merged using a stacked vector approach (Richards and Jia, 
2006)) associated with the pixel at position ( , )i j , and 1D , 2D  
define respective dimensionalities. 
Let { }1

1 1 1
1 , , Lω ωΩ = …  and { }2

2 2 2
1 , , Lω ωΩ = …  be the set of land-

cover classes characterizing 1X  and 2X , respectively. In the 
following, we will denote as 1 1

intω ∈Ω  and 2 2
intω ∈Ω  the infor-

mation classes of interest at 1t  and 2t , for which 1N  and 2N  
labelled training patters are available, respectively. Hence, 

{ }1 1 1
unk intω ω= Ω −  and 2 2 2

unk int{ }ω ω= Ω −  will represent corre-
sponding unknown classes (each consisting of the merger of 
remaining classes, for which no ground truth is available). 
Let 1 1 ,

, 1{ }I J
ij i jC ==C  and 2 2 ,

, 1{ }I J
ij i jC ==C  denote two sets of labels for 

1X  and 2X , respectively, where 1
int unk{ , }t t

ijC ω ω∈  and 
2

int unk{ , }t t
ijC ω ω∈  are associated with the pixel at position ( , )i j . 

In this framework, our aim is to identify the two sets 1�C , 2�C  

maximizing the posterior probability given the two images 1X , 
2X  and, finally, to draw pixels experiencing the targeted land-

cover transition from 1
intω  to 2

intω . This can be formalized as a 
compound decision problem (Duda et al., 2000): 
 
 
 

1 2

1 2 1 2 1 2

,
{ , } argmax{ ( , | , )}P=� �

C C
C C C C X X    (1) 

 
 
According with the Bayes theory, finding a solution to (1) is 
equal to determine the sets of labels maximizing the likelihood 

1 2 1 2 1 2 1 2 1 2( , | , ) ( , ) ( , | , )P p= ⋅L X X C C C C X X C C . 
In the reasonable hypothesis of time-conditional independence, 
the problem can be written as: 
 
 

1 2

1 2 1 2 1 2 1 2 1 1 2 2

,
{ , } argmax{ ( , | , ) ( , ) ( | ) ( | )}P p p= = ⋅ ⋅� �

C C
C C L X X C C C C X C X C  (2) 

 
 
where 1 1( | )p X C  and 2 2( | )p X C  represent the conditional 
PDFs at 1t  and 2t  respectively. 
 
 

3. PROPOSED PARTIALLY-SUPERVISED CHANGE-
DETECTION TECHNIQUE 

For addressing the complex task described in Section 2, we 
propose a novel partially-supervised technique aimed at ap-
proximating the class-conditional densities 1 1( | )p X C , 

2 2( | )p X C  as mixtures of suitable basis kernel functions and 
estimating the joint prior probability 1 2( , )P C C  properly taking 
into consideration the spatio-temporal context.  
The rationale is based on the observation that the PDF of an 
image can be always approximated by a mixture of suitable 
kernels (i.e., Parzen density estimation (Duda et al., 2000)). 
Accordingly, similarly to what is commonly done in the context 
of Radial Basis Function Neural Networks (RBF-NN) (Bruz-
zone and Fernàndez-Prieto, 1999), we model for each pixel of 
both images the PDFs 1( )ijp x , 2( )ijp x  as a mixture of K  circu-
larly symmetric multivariate Gaussian functions. Kernel pa-
rameters (i.e., centres and variances) are initialized using the k-
mean clustering algorithm (Bruzzone and Fernàndez-Prieto, 
1999), whereas final estimates are obtained by using the EM 
algorithm (Dempster et al., 1977). Then, class-conditional den-
sities of the interest class 1 1

int( | )ijp ωx , 2 2
int( | )ijp ωx  are modelled 

by properly weighting the resulting set of kernels using again 
the EM algorithm over the training samples available for 1

intω  
and 2

intω . This is somewhat analogous to the training phase of 
RBF-NN which is generally carried out in two steps: i) selec-
tion of centres and variances of the kernel functions associated 
with hidden units on the basis of clustering techniques; and ii) 
computation of weights associated with the connections be-
tween the hidden and output layers on the basis of available 
training patterns. 
The PDF of the entire image is itself a mixture of the interest 
and unknown class-conditional densities, weighted by corre-
sponding prior probabilities. Accordingly, we obtain a first 
rough approximation for 1 1

unk( | )ijp ωx , 2 2
unk( | )ijp ωx  initializing 

priors to 0.5. Afterwards, estimates are refined using a novel 
MRF-based iterative labelling strategy accounting for spatio-
temporal correlation, which permits to model 1 2( , )ij ijP C C  mutu-
ally considering the local neighbourhood of each pixel in the 
two images. Finally, changed pixels are identified and associ-
ated with the targeted land-cover transition by minimizing a 
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proper energy function. In the following, we will first introduce 
the method adopted for modelling both the class-conditional 
densities and the joint prior probability; then, we will present 
the iterative strategy for identifying the sets of labels 1�C , 2�C  
maximizing the likelihood 1 2 1 2( , | , )L X X C C . 
 
3.1 Conditional Density Modelling 

Computing ( | )t tp X C , 1,2t = , requires at the two considered 
dates the estimation of the class-conditional densities 

int( | )t t
ijp ωx  and unk( | )t t

ijp ωx , t t
ij∀ ∈x X . The proposed approach 

is based on the observation that the PDF of each pixel can be 
modelled as a mixture of the conditional PDFs of both the inter-
est and unknown classes: 
 
 
 ( ) int int unk unk( ) ( | ) ( ) ( | )t t t t t t t

ij ij ijp P p P pω ω ω ω= ⋅ + ⋅x x x    (3) 
 
 
According with Parzen density estimation (Duda et al., 2000), 
we aim at obtaining a reliable nonparametric estimate for 

( )t
ijp x  as a mixture of a suitable set of kernel functions 

1{ ( )}t t K
k kφ =Φ = ⋅ : 

 
 

  

1

ˆ ( ) ( )
K

t t t t
ij k k ij

k

p w φ
=

= ⋅∑x x    (4) 

 
 
where K  denotes the number of kernels (a free parameter to be 
set by the user), and { } 1

Kt t
k kw ==W  represent the weights regu-

lating the contribution of each kernel. 
However, since the density ( )t

ijp x  is given by a linear combi-
nation of int( | )t t

ijp ωx  and unk( | )t t
ijp ωx , it is worth noting that, if 

the set of kernels tΦ  allows obtaining a reliable estimate 
ˆ ( )t

ijp x , then also both the class-conditional densities can be 
reliably approximated as a linear combination of tΦ . Hence, 
they can be estimated as: 
 
 

  int int

1

ˆ ( | ) ( )
K

t t t t t
ij k k ij

k

p wω φ
=

= ⋅∑x x    (5) 

 
 

  unk unk  

1

ˆ ( | ) ( )
K

t t t t t
ij k k ij

k

p wω φ
=

= ⋅∑x x    (6) 

 
 
where { }  int int  1

Kt t
k kw ==W , { }  unk unk  1

Kt t
k kw ==W  are the weights regu-

lating the contribution of each kernel for the interest and un-
known classes, respectively. 
As commonly done in the literature we consider normalized 
isotropic Gaussian kernels, i.e. 
 
 

 
( )

2

22

1 || ||( ) exp
22

t

t t
ij kt t

k ij D tt kk

φ
σπσ
−⎡ ⎤= −⎢ ⎥⎣ ⎦

xx μ    (7) 

 
 
where t

kμ  is the centre and 2t
kσ  is the variance (which tunes the 

smoothness of the estimate). 
In the following, we describe into details the procedures 
adopted for estimating ˆ ( )t

ijp x , intˆ ( | )t t
ijp ωx  and unkˆ ( | )t t

ijp ωx , 
respectively. 

3.1.1 Estimation of ( )ˆ t
ijp x  

For computing both the centres 1{ }t t K
k kM == μ  and variances 

2
1{ }t t K

k kσ =Σ =  of all the kernels, as well as the set of weights tW  
defining ˆ ( )t

ijp x , we employ the EM algorithm over all the pix-
els of tX . EM allows determining the maximum likelihood 
(ML) estimator of the parameters characterizing a certain distri-
bution in the presence of incomplete observations (Dempster et 
al., 1977). Indeed, our objective is to identify the ML estimate 
for the set of parameters 2

1{ , , } { , , }t t t t t t t K
k k k kM wθ σ == Σ =W μ  that 

allows maximizing the log-likelihood of tX , i.e. 
 
 

 [ ] [ ]
,

, 1

ˆln ( ) ln ( | ) ln ( )
I J

t t t t
ij

i j

p pθ θ
=

= =∑ xL X    (8) 

 
 
At each iteration l , the set of estimated parameters [ ]( )ltθ  pro-
vides an increase in the log-likelihood until a local maximum is 
reached, i.e. [ ]( ) [ ]( )( ) ( )ln lnl lt tθ θ≥L L . 
For simplicity, weights are initially set to 1/ K , whereas kernel 
parameters are initialized using the k-means clustering algo-
rithm (Bruzzone and Fernàndez-Prieto, 1999) fixing the number 
of clusters equal to K . In particular, centres and variances of 
the Gaussians are initialized to the centres and variances of the 
resulting clusters. Then, according with Dempster et al., 1977, 
the updated estimates for the unknown parameters are given by: 
 
 

 

 

 

( -1) ( -1),

( -1)
, 1( )

[ ] [ ( )]
ˆ[ ( )][ ]

t l t t lI J
k k ij

t l
iji jt l

k

w
pw
I J

φ
=

⋅

=
⋅

∑ x
x    (9) 

 
 

 

 

 

 

( -1) ( -1),

( -1)
, 1( )

( -1) ( -1),

( -1)
, 1

[ ] [ ( )]
ˆ[ ( )][ ]

[ ] [ ( )]
ˆ[ ( )]

t l t t lI J
k k ij t

ijt l
iji jt l

k t l t t lI J
k k ij

t l
iji j

w
p

w
p

φ

φ
=

=

⋅ ⋅
=

⋅

∑

∑

x x
x

x
x

μ    (10) 

 
 

 

 

 

 

( -1) ( -1),
2( )

( -1)
, 12 ( )

( -1) ( -1),

( -1)
, 1

[ ] [ ( )] [ ]
ˆ[ ( )][ ]

[ ] [ ( )]
ˆ[ ( )]

t l t t lI J
k k ij t t l

ij kt l
iji jt l

k t l t t lI J
k k ij

t t l
iji j

w
p

wD
p

φ

σ
φ

=

=

⋅ ⋅ −
=

⋅⋅

∑

∑

x x
x

x
x

μ
   (11) 

 
 
Reasonably, we assume that convergence is reached when the 
relative increase in the log-likelihood is lower than a prefixed 
threshold ε . 
 
3.1.2 Estimation of intˆ ( | )t t

ijp ωx  
Once tM  and tΣ  have been determined (and hence the set of 
kernels tΦ  properly defined), we exploit the available ground 
truth for the class of interest int

tω  at each date for deriving the 
estimate of the corresponding conditional density intˆ ( | )t t

ijp ωx . 
In particular, the set of weights  int

tW  associated with int
tω  is 

determined using again the EM algorithm, but solely on the 
available training samples int{ | }t t t t

ij ijy ω= ∈ =xT X , | |t tN=T , 
where ijy  denotes the true label for pixel at position ( , )i j . 
Weights are initialized to 1/ K , and then updated (according 
with Dempster et al., 1977) using the following equation: 
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( -1),
int  

( -1)
int, 1( )

int  

[ ] ( )
ˆ[ ( | )][ ]

t l t tI J
k k ij

ij t t l
iji jt l

k
t

w
pw

N

φα
ω=

⋅⋅
=
∑ x

x , 
1 if   
0 if   

t t
ij

ij t t
ij

α
∈⎧= ⎨ ∉⎩

x
x

T
T

  (12) 

 
 
The corresponding log-likelihood is given by: 
 
 

 
,

int int

, 1

ˆln ( ) ln[ ( | )]
I J

t t t t
ij ij

i j

pθ α ω
=

≡ = ⋅∑ xL W    (13) 

 
 
Even in this case we assume that convergence is reached if the 
relative increase in the log-likelihood is lower than ε . 
 
3.1.3 Estimation of unkˆ ( | )t t

ijp ωx  
It is worth noting that Eq. (3) can be re-written as: 
 
 

unk unk  int int

1 1 1

( ) ( ) ( ) ( ) ( )
K K K

t t t t t t t t t t t
k k ij k k ij k k ij

k k k

P w w P wω φ φ ω φ
= = =

⋅ ⋅ = ⋅ − ⋅ ⋅∑ ∑ ∑x x x  (14) 

 
 
Hence, 1, ,k K∀ = …  it holds  unk unk  int int( ) ( )t t t t t

k k kP w w P wω ω⋅ = − ⋅ . 
Since int unk( ) ( ) 1t tP Pω ω+ = , we have: 
 
 

  
int int int int

unk  
unk int

( ) ( )
( ) 1 ( )

t t t t t t
k k k kt

k t t

w P w w P ww
P P

ω ω
ω ω

− ⋅ − ⋅= =
−

   (15) 

 
 
Then, as tM , tΣ , tW  and  int

tW  have been determined, we can 
compute unkˆ ( | )t t

ijp ωx  substituting (15) into (6), upon it is possi-
ble to obtain a reliable estimate intˆ ( )tP ω  for the prior probability 
of the class of interest. This can be properly accomplished 
throughout the iterative labelling phase presented below. 
 
3.2 Joint Prior Modelling 

For modelling the joint prior 1 2( , )P C C , we propose an ap-
proach based on MRF (Solberg et al., 1996). In particular, we 
assume that the couple of labels 1

ijC , 2
ijC  associated with pixel 

at position ( , )i j  at times 1t  and 2t  depends on the couples of 
labels associated with pixels belonging to the spatial 
neighbourhood  ijG  of ( , )i j  at the two dates (we always con-
sidered first order neighbourhoods). 
In other words, the higher the number of its spatial neighbours 
experiencing a certain land-cover transition is, the higher the 
probability for a given pixel of experiencing the same transition 
is. In this hypothesis, according with the MRF theory, it holds 
the equivalence: 
 
 
 [ ]1 2 1 2 1 1 2

contex( , | , ;( , )  ) exp ( , )ij ij gh gh ij ij ijP C C C C g h Z U C C−∈ = ⋅ −G   (16) 
 
 
where ( )ijZ Z= G  is a normalizing constant called partition 
function, while contexU  is a Gibbs energy function (accounting 
for the spatio-temporal context) of the form: 
 
 

 [ ]1 2 1 2 1 2
contex

( , )

( , ) ( , ),( , )
ij

ij ij ij ij gh gh

g h

U C C C C C Cβ δ
∈

= − ⋅∑
G

   (17) 

where 0β >  tunes the influence of the context and δ  is the 
Kronecker delta function defined as: 
 
 

 [ ]
1 2 1 2

1 2 1 2
1 2 1 2

1 if   ( , ) ( , )
( , ),( , )

0 if   ( , ) ( , )
ij ij gh gh

ij ij gh gh
ij ij gh gh

C C C C
C C C C

C C C C
δ

=⎧= ⎨ ≠⎩
  (18) 

 
 
3.3 Iterative Labelling 

Solving Eq. (2) is equivalent to maximize the log-likelihood 
1 2 1 2ln ( , | , )L X X C C , which can be written as: 

 
 

2
1 2 1 2 1 2

data contex

1

ln ( , | , ) ( , ) ( , ) ln( )t t t

t

U U Z
=

= − − −∑L X X C C X C C C  (19) 

 
 
where data ( , ) ln[ ( | )]t t t t tU p= −X C X C , represents the class-
conditional energy function at date 1,2t = , while contexU  is 
given by (17). Since Z  solely depends on the selected type of 
neighbourhood, the final problem becomes solving: 
 
 

1 2

1 2 1 2 1 1 1 2 2 2
contex data data

,
{ , } argmin{ ( , ) ( , ) ( , )}U U U= + +� �

C C
C C C C X C X C (20) 

 
 
To this aim, we propose a strategy based on the Iterated Condi-
tional Modes (ICM) algorithm (Besag, 1996) which allows 
maximizing local conditional probabilities sequentially. In par-
ticular, at each iteration l we update the estimated prior prob-
abilities for the class of interest at each date intˆ ( )tP ω  and, ac-
cordingly, also the class-conditional densities of the unknown 
classes unkˆ ( | )t t

ijp ωx . The algorithm works as follows: 
Step 1. After estimating intˆ ( | )t t

ijp ωx , t t
ij∀ ∈x X , 1,2t =  follow-

ing the approach described in the previous paragraphs, set 
intˆ ( ) 0.5tP ω =  (no prior knowledge is assumed to be available 

about the true prior int( )tP ω ) and compute the conditional den-
sity of the unknown classes unkˆ ( | )t t

ijp ωx  accordingly; 
Step 2. Derive the initial sets of labels 1�C , 2�C  by solely mini-
mizing the non-contextual terms of Eq. (20), i.e. 

1 2 1 1 1 2 2 2
data data{ , } argmin{ ( , ) ( , )}U U= +� �C C X C X C ; 

Step 3. On the basis of current 1�C  and 2�C , compute the new 
estimated prior probabilities ratioing the number of pixels asso-
ciated with the class of interest over the whole number of pix-
els, i.e. int intˆ ( ) ( )t tP I Jω = ⋅�C , ,

int int , 1{ | , }t t t t t t I J
ij ij ij i jC C C ω == ∈ =� �C C ; 

then, update the class-conditional densities for the unknown 
classes unkˆ ( | )t t

ijp ωx  accordingly; 
Step 4. Update 1�C  and 2�C  according with Eq. (20); 
Step 5. Repeat Step 3 and Step 4 until no changes occur be-
tween successive iterations. 
At the end of the process, the final targeted change-detection 
map *C  is defined as: 
 
 

 * * ,
, 1{ }I J

ij i jC ==C , 
1 1 2 2

int int* 1   if  and  
  

0 otherwise
ij ij

ij
C C

C
ω ω= =⎧= ⎨

⎩
  (21) 

 
 

4. EXPERIMENTAL RESULTS 

In order to assess the effectiveness of the proposed technique, 
we carried out several experiments with different combinations 
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of multispectral, hyperspectral and SAR data. Nevertheless, due 
to space constraints, we will focus the attention solely on a 
representative change-detection problem referring to an intense 
farming area experiencing several land-cover transitions located 
in Barrax, a village close to Albacete (Castilla-La Mancha, 
Spain). In particular, available data consist in: two Landsat-5 
Thematic Mapper (TM) images acquired on 15th July 2003 and 
17th July 2004, respectively (as generally done in the literature 
among the 7 spectral bands we did not consider the low-
resolution band associated with the thermal infrared channel); 
one PROBA CHRIS image (composed by 63 spectral bands 
with centre wavelengths from 400 to 1050 nm) acquired on 16th 
July 2004; and one Envisat ASAR alternate polarization (VV, 
HH) image (despeckled using a 3 3×  Gamma filter) acquired on 
18th July 2004. All of them have been properly co-registered to 
a common spatial geometry of 30 meters and a study area of 
512 × 512 pixels has been selected. July 2003 will be referred 
to as 1t , whereas July 2004 will be referred to as 2t  (no signifi-
cant changes indeed occurred between 16th and 18th July 2004). 
From the original available images we derived the following 
three datasets (using the stacked vector approach for multi-
source data fusion (Richards and Jia, 2006)) composed by: i) 
the 6 Landsat TM bands at both 1t  and 2t  (i.e., 1 2 6D D= = ) 
[Dataset I]; ii) the 6 Landsat TM bands at 1t  and the merger of 
the 2 Envisat ASAR backscattering intensity images with the 6 
Landsat TM bands at 2t  (i.e., 1 6D =  and 2 8D = ) [Dataset II]; 
and iii) the 6 Landsat TM bands at 1t  and the 63 PROBA 
CHRIS bands at 2t  (i.e., 1 6D =  and 2 63D = ) [Dataset III]. 
However, it is worth noting that our objective is not to seek for 
a set of features at both dates which could be more effective for 
solving the investigated problem, but rather to demonstrate that 
the presented method is even capable of effectively handling 
different types of data at the two times. 
As described in Section 3, the user is required to set the number 
of Gaussian kernels K  to be employed for approximating the 
PDFs. Hence, in order to understand how significant the selec-
tion of this free parameter is, we performed a series of experi-
ments varying K  from 20 to 120 with steps of 10. 
According with a variety of experiments on toy and real data-
sets we fixed 410ε −=  and 210β = . 
In all the trials we employed the k-means clustering for initializ-
ing both centres and variances of kernel functions. Neverthe-
less, the very high complexity of the algorithm (i.e., approxi-
mately ( 1)( log )D KO N N⋅ + , where N  and D  represent the num-
ber of samples to be clustered and their dimensionality, respec-
tively (Inaba et al., 1994)), prevented us from using all the pat-
terns of each investigated image at a time, as this would have 
required a very high computational burden. In order to over-
come this limitation, for each image we ran the k-means algo-
rithm on a random subset containing one third of the total 
amount of samples. However, as this might affect the final 
change-detection accuracies of the proposed technique, for each 
number of considered kernels K , we performed 10 different 
trials running each time the k-means clustering on a different 
random subset. Moreover, we finally also combined the 10 
resulting change-detection maps through a majority voting en-
semble. 
For validating the potentialities of the presented method, we 
compared the results with those obtained by supervised PCC. In 
particular, we considered ML and SVM fully-supervised classi-
fiers trained by exploiting a complete ground truth for all the 
land-cover classes characterizing each considered date. ML is a 
simple yet generally rather effective statistical classifier, which 
does not require the user to set any free parameter (Richards 
and Jia, 2006). SVM are advanced state-of-art classifiers, which 
proved capable of outperforming other traditional approaches 

(Cristianini and Shawe-Taylor, 2000). For the selection of the 
two free parameters (i.e., a penalization parameter and the vari-
ance of considered Gaussian kernels) we employed a 10-fold 
cross-validation strategy (Duda et al., 2000). 
Available prior knowledge has been used for defining regions 
of interest composed on the whole by 21941 pixels whose 
ground truth was known at the two times, respectively. 10 land-
cover classes have been considered at 1t , whereas 9 have been 
taken into consideration at 2t . At both dates, from all the avail-
able labeled samples we defined two spatially-disjoint training 
sets (see Table 1). This means that there is no overlapping be-
tween training samples at 1t  and 2t . All of them have been used 
for training both the ML and SVM supervised classifiers at each 
time. 
 
 

Land-cover class 1t  (July 2003) 2t  (July 2004) 
alfalfa 2031 634 

bare soil 2585 – 
corn 1737 2664 

garlic 101 302 
grasslands – 42 

onions 213 220 
poppy 336 – 

potatoes 208 283 
spring crops – 3318 

stubble 2416 2247 
sugar beet 365 – 
sunflower – 449 

wheat 369 – 
total 10361 10159 

 
Table 1. Number of spatially-disjoint training samples 

considered at the two dates. 
 
Change-detection results have been evaluated (over those sam-
ples whose land-cover class is known at both dates) in terms of: 
percentage overall accuracy OA% (i.e., the percentage of sam-
ples correctly identified as both changed or unchanged over the 
whole number of samples), and kappa coefficient of accuracy 
(which also takes into consideration errors and their type) 
(Richards and Jia, 2006). 
Among the different land-cover transitions occurred between 
the two dates, here we take into consideration (one at a time) 
two of them, namely “bare soil to spring crops” and “alfalfa to 
corn” (experienced by 4583 and 1035 pixels, respectively, over 
the whole available 21941 whose ground truth was known at 
both times). 
In our trials, we empirically experienced that a common range 
for K  resulting in average high detection accuracies spans 
from 60 to 80. When instead nearing the lower or the upper 
bound of the considered interval, performances tend to vary 
depending on the specific land-cover transition of interest. Ac-
cordingly, in Table 2 and Table 3 we show the results obtained 
with the proposed technique for 40K = , 60, 80, 100. In par-
ticular, we report the median over the 10 realizations with dif-
ferent k-means clustering initialization. Moreover, also accura-
cies finally obtained with the majority voting ensemble (de-
noted as PSCDMV), as well as those obtained by supervised PCC 
using ML and SVM (denoted as PCCML and PCCSVM, respec-
tively) are presented. 
While investigating the “bare soil to spring crops” transition 
with the proposed PSCD technique, from all the training pixels 
reported in Table 1, we considered the only 2585 available for 
bare soil at 1t  and the only 3318 spatially-disjoint available for 
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spring crops at 2t . Obtained results are very satisfactory, as 
confirmed by both the high kappa and OA% values reported in 
Table 2 (always higher than 0.79 and 92, respectively). More-
over, by employing the majority voting ensemble it is possible 
to further improve the performances and obtaining for both 
indexes accuracies even closer to those obtained by PCCML and 
PCCSVM with a fully-supervised training at both dates. 
 
 

 Dataset I Dataset II Dataset III 
K kappa OA% kappa OA% kappa OA% 
40 0.8925 96.59 0.8403 95.09 0.7955 92.61 
60 0.8903 96.53 0.8458 95.21 0.8488 94.97 
80 0.8822 96.25 0.8412 95.11 0.8441 94.80 
100 0.8878 96.47 0.8470 95.31 0.8502 94.93 

PSCDMV 0.9076 97.08 0.8649 95.82 0.8622 95.32 
PCCML 0.9339 97.88 0.9323 97.83 0.9330 97.86 
PCCSVM 0.9501 98.36 0.9359 97.90 0.9703 99.02 

 
Table 2. kappa coefficient of accuracy and OA% obtained for 

the “bare soil to spring crops” land-cover transition. 
 
While addressing the “alfalfa to corn” transition with the pro-
posed PSCD technique, from all the training pixels reported in 
Table 1, we considered the only 2031 available for alfalfa at 1t  
and the only 2664 spatially-disjoint available for corn at 2t . 
Such a transition is rather difficult to characterize, as only ex-
perienced by few fields in the considered area. Indeed, accord-
ing with the results in Table 3, this is confirmed by the very low 
accuracies obtained by PCCML despite fully-supervised training. 
Instead, in the light of the high complexity of the problem, per-
formances exhibited by the proposed method are very promis-
ing, especially for Dataset II and Dataset III. Moreover, with 
the majority voting ensemble the gap with respect to PCCSVM 
becomes very small (Dataset II) or it is even possible to outper-
form results obtained with SVMs (Dataset III). 
 
 

 Dataset I Dataset II Dataset III 
K kappa OA% kappa OA% kappa OA% 
40 0.6725 97.36 0.8549 98.79 0.8117 98.40 
60 0.7110 97.79 0.8190 98.49 0.8343 98.60 
80 0.6530 97.25 0.8172 98.45 0.8206 98.45 
100 0.6553 97.32 0.7233 97.92 0.8367 98.62 

PSCDMV 0.7524 98.16 0.8896 99.06 0.9079 99.22 
PCCML 0.5163 96.87 0.5134 96.86 0.5353 97.05 
PCCSVM 0.9003 99.08 0.9244 99.32 0.8969 99.04 

 
Table 3. kappa coefficient of accuracy and OA% obtained for 

the “alfalfa to corn” land-cover transition. 
 
 

5. CONCLUSIONS 

In this paper we presented a novel partially-supervised change-
detection (PSCD) technique capable of addressing targeted 
change-detection problems where the objective is to identify 
one (or few) targeted land-cover transitions, under the assump-
tion that ground-truth information is available for the only (few) 
class(es) of interests at the two investigated dates. 
In this context, either supervised or unsupervised standard ap-
proaches cannot be effectively employed. The proposed 
method, instead, allows exploiting the only prior knowledge 
available for the specific land-cover classes of interest at the 

two times, while providing accuracies comparable with those of 
fully-supervised methods. In particular, the PSCD technique 
relies on a partially-supervised approach and jointly exploits the 
Expectation-Maximization (EM) algorithm and an iterative 
labelling strategy based on Markov random fields (MRF) ac-
counting for spatial and temporal correlation between the two 
images. Moreover, it also allows handling images acquired by 
different sensors at the two considered times. Experimental 
results on multi-sensor datasets derived from multispectral, 
hyperspectral and SAR data confirmed the effectiveness and the 
reliability of the proposed technique 
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