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ABSTRACT: 

 

The three-dimensional single tree extraction by applying pattern recognition based modified clustering approach on full waveform 

normalized raw LIDAR data has been presented in this research work. The LIDAR data of medium density (16 points m-2) was 

collected in August 2007 from the administrative forest district Hardt, Germany. The total study area is 1.75 ha and dominated by 

various deciduous tree species. The study plots selected contains multi-tier tree species of different age groups. Clusters of single tree 

extracted after running the algorithm were reconstructed using QHull algorithm. A validation procedure was devised and used for the 

accuracy assessment of the automatically detected tree species with respect to the forest inventoried data. The average producer’s and 

user’s accuracy for the total study area was around 56% and 41%, respectively. The results showed that the modified algorithm 

worked fairly well in the detection of evergreen conifers (79%) than the deciduous tree species (47%) beside the fact that conifers 

constitute roughly 18% of the total study area. The result showed that the algorithm for the upper tier trees species which are 

relatively mature and older worked better as compared to the tree species lying beneath the first-tier. The mixture of multi-storey tree 

species of varying age and height quintile with dense canopy cover was a limiting factor in the detection of single tree automatically 

in the presented work and shows the future scope of improvement in the algorithm applied. 

 

 

                                                                 

*  Corresponding author.  

1. INTRODUCTION 

In a complex forest ecosystem, finding the distribution of 

different tree species of varying age and height quintile through 

traditional methods is a very thorny job. In the past one decade, 

the demand for high quality LIght Detection And Ranging 

(LIDAR) data with more information has tremendously 

increased for various applications. The increasing demand of 

individual tree related information, as a basis to improve forest 

management performance, is the concerned factor for 

developing various methodologies for single tree extraction and 

related parameter estimation from airborne laser scanner (ALS) 

data. Clustering provide a good way of partitioning the whole 

normalized ALS dataset of the test area into an individual 

clusters. Because of the high point density full waveform 

LIDAR data provide a good platform to implement the 

clustering mechanisms via partitioning the data into individual 

clusters, each representing single tree. There are different 

clustering mechanisms, but the most popular k-means was 

chosen which is an iterative hill-climbing method and is a staple 

of clustering methods (Gupta et al., 2010). These has motivated 

to test the full waveform ALS data for the extraction of pattern 

of single tree crowns of different tree species in the selected 

plots of Hardt administrative forest district of Germany using 

modified clustering based approach and has been presented in 

the current work.  

 

2. EXISTING RELATED WORK 

Several studies has been carried out in the past on the 

application of airborne LIDAR data for vegetation related 

information retrieval using different methods (Hyyppä and 

Inkinen, 1999; Hyyppä et al., 2006; Ko et al., 2009; Nilsson, 

1996; Persson et al., 2002; Persson et al., 2006; Vauhkonen et 

al., 2009; Wang et al., 2008). Research work using clustering 

based approaches for 3-dimensional (3-D) single tree extraction 

using airborne LIDAR data has been carried out (Cici et al. 

2008; Doo-Ahn et al. 2008; Gupta et al., 2010; Morsdorf et al. 

2003; Morsdorf et al. 2004; Reitberger et al. 2008). Morsdorf  

et al. (2003) used first and last pulse data with an overall 

density of 30 points m-2 and the k-means method to extract 

single tree in the Swiss National Park. In contrast to the 

modified algorithm used in the presented work, instead of 

scaling-down the height values, they scaled-up it by a factor of 

3. This has been done to accommodate the aspect ratio of pine 

tree crowns (ranged from 3 to 6). However, it was concluded on 

the basis of previous study (Gupta et al., 2010) that by scaling 

down the height value of the normalized raw LIDAR points and 

the external seed points (local maxima), squared error function 

is minimized which is the ultimate objective of the k-means 

method. The closer the points will be, more precise will be the 

cluster formation with regard to actual tree/tree crown and its 

shape. The algorithm used in the presented work differs from 

Morsdorf et al. (2003) in a way that unwanted local maxima 

points were deleted in the pre-processing step. Riaño et al. 

(2004) estimated a derivative of foliage biomass, crown bulk 

density, using lidar metrics with k-means clustering at both plot 

and individual tree scales. However, individual tree level 

analyses were not completely successful in their work. In a 

study conducted by Ko et al. (2009) for deciduous-coniferous 

classification using single leaf-on high density full waveform 
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LIDAR data, branches of 27 coniferous and 38 deciduous trees 

were derived by calculating the mean silhouette values 

repeatedly for different k values using simple k-means approach 

for improved visualization. The method lacks the efficiency for 

finding the suitable value of k with respect to different tree 

types, tree age and forest conditions. In their study the result is 

not validated using any field data. Ørka et al. (2009) tested the 

supervised classification strategy using linear discriminant 

analysis (LDA), random forest (RF) algorithm and support 

vector machines (SVM) for tree species classification. They also 

used unsupervised k-means clustering and k-means clustering in 

combination with the unsupervised random forest algorithm for 

the same purpose. However, their result showed that accuracies 

were lower in case of unsupervised one than for supervised 

methods applied for overall species classification. This shows 

that supervised methods are more promising which was found 

true during the investigation after a comparative qualitative 

analysis of the output by applying different clustering 

algorithms (Gupta et al., 2010). Vauhkonen et al. (2009) used 

LDA for the classification of individual trees and alpha shape 

metrics for tree species classification in Scandinavian test site 

comprising 92 trees detected and delineated manually from a 

very dense ALS data. However, the method applied required to 

be tested for larger dataset with lower or medium point density 

by automatic detection. Apart from tree detection methods, a 

method for reconstructing the tree crowns was also provided 

(Pyysalo and Hyyppä, 2002). There are many ways for 

constructing the shape of extracted points of single tree using 

different computational geometry concept like convex hull, 3D 

Delaunay triangulation or can be shown as 3-D surface or mesh.  

 

3. MATERIALS AND METHODOLOGY 

3.1 Study Area  

Investigations were carried out in the selected plots of 

administrative forest district Hardt, Baden-Württemberg region 

in the South-West of Germany. The study area is flat, 1.75 ha in 

total, comprising 7 rectangular study plots, each of size 0.25 ha. 

 

 
Figure 1.  Location of rectangular study plots (green) as seen in 

the RGB aerial photograph  

 

The study plots in the forest are characterized by a variety of 

deciduous and coniferous tree species of different ages. The 

forest is marked with highly interconnected and dense standing 

deciduous crowns. The overall fraction of deciduous and 

evergreen coniferous tree species is nearly 82% and 18%, 

respectively. Except plot 3, rest of the plots are dominated by 

deciduous trees species (Table 2). The dominant tree types in 

the studied field plots are Scots pine (Pinus sylvestris – 13.9%), 

Cherry (Prunus avium – 23.7%), Oak (Quercus petraea – 

24.3%), European Beech (Fagus sylvatica – 21.1%), Hornbeam 

(Carpinus betulus - 9.5%) and 7.6% others species (Norway 

spruce - Picea abies, Douglas fir - Pseudotsuga menziesii and 

few other minor species). All the study plots are made up of 

multi-storey canopy layers. From the field inventory data 

collected, it was found that the height of different tree species of 

analyzed study plots varied between 8-35 m and average height 

ranged between 8-31 m. 

 

Plot  

Id 

 

Tree type Tree species % of tree  

1 

Deciduous  

Hornbeam + Cherry 

34.4 + 56.2  

= 90.6 

Evergreen  

conifer Scots pine 9.4 

2 

Deciduous  

Cherry + Oak 

91.8 + 4.1  

= 95.9 

Evergreen  

conifer Scots pine  4.1 

3 

Deciduous Red Oak + European 

Beech + Black 

Locust 

8.3 + 25.0 +  

5.6 = 38.9 

Evergreen  

conifer 

Scots pine + 

Douglas fir + 

Norway spruce 

44.4 + 13.9  

+ 2.8 = 61.1 

4 

Deciduous  Hornbeam + 

European Beech 

68.2 + 9.1  

= 77.3 

Evergreen  

conifer Scots pine 22.7 

5 

Deciduous  Oak + European 

Beech + Linden + 

Silver Birch 

73.2 + 18.8 +  

3.0 + 1.0 = 

96.0  

Evergreen  

conifer Scots pine 4.0 

6 

Deciduous  European Beech + 

Sycamore Maple 

72.4 + 2.1  

= 74.5 

Evergreen  

conifer Scots pine 25.5 

7 

Deciduous  European Beech + 

Sycamore Maple + 

Cherry + Hornbeam 

+ Oak 

10.0 + 6.7 +  

40.0 + 13.3 +  

3.3 = 73.3 

Evergreen  

conifer 

Scots pine + Norway 

spruce 

6.7 + 20.0  

= 26.7 

 

Table 2. Tree species distribution 

 

The name and distribution of tree species in Table 2 are in the 

same order. 

 

3.2 Field Data Characteristics 

Forest inventory data of the study plots was provided by the 

Forest Research Institute (FVA) of Baden-Württemberg. All 

trees in the plot above 7 cm diameter at breast height (DBH) 

were measured. Two top heights of the main tree and one top 

height of the dominated tree were measured using a Vertex® 

instrument. The arithmetic mean of the height measurements 

was calculated as an average top height for each plot (Straub et 

al., 2009). Stand height curves with the DBH as input variable 

were used to estimate the heights of the remaining trees (Korn-

Allan et al., 2004). Several height percentiles were calculated 
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for each inventory plot based on the nDSM and LIDAR points 

(Straub et al., 2009). Further, field work was conducted for plot 

establishment and measuring coordinates. Coordinates of center 

point and four corners of each rectangular plot were measured. 

Some other parameters like azimuth and distance from the 

middle point of each sample plot to sampling tree inside the plot 

were also taken. Tree coordinates were then derived using the 

azimuth and distance from the center point of each plot using 

compass and tape.  

 

3.3 LIDAR Data and Pre-processing 

Full waveform laser scanner data of density (16 points m-2) was 

acquired during August 2007 by TopoSys GmbH using the 

Riegl LMS-Q56O system. Important flight and system 

parameters are given by Straub et al. (2009). Both the raster 

terrain and surface models of 50 cm resolution were calculated 

using the LIDAR raw point clouds. An ‘Active Surface 

Algorithm’ implemented in the "TreesVis" - software for 

LIDAR data visualization and analysis, was used for data 

filtering and surface interpolation (Weinacker et al., 2004). A 

normalized digital surface model (nDSM) was derived by 

subtracting the digital terrain model (DTM) from the digital 

surface model (DSM) using "TreesVis" software. Raw full 

waveform LIDAR points were normalized using the DTM to 

ensure the absolute height of the object and to eliminate the 

influence of the terrain. Thus, obtained normalized raw data was 

further used in the main process for clustering. 

 

3.4 Orthophoto Characteristics 

RGB/NIR Optical data were collected by TopoSys GmbH in 

July 2008. Important flight and technical parameters of the 

RGB/NIR line scanner are given by Straub et al. (2009). The 

individual flight strips were rectified and georeferenced with the 

aid of DSM, which was filtered from ALS data (6-7 points m-2) 

acquired at the same time with the optical data. Orthophotos 

were computed by the data provider and were delivered at 25 

cm spatial resolution. 

 

3.5 Data Processing 

3.5.1 Clustering by Modified k-means:  The k-means treats 

each observation in the input data as an object having a location 

in the space. The objective of k-means algorithm is to minimize 

the total intra-cluster variance or the squared error function. In 

the algorithm, the sum of absolute differences between each 

point and its closest centre in Euclidian 3-D space is minimized. 

Each centroid is the mean of the points in that cluster. It is also 

advantageous to implement k-means since it uses the actual 

observations of the objects (rather than the larger set of 

dissimilarity measures), and not just their proximities unlike the 

hierarchical clustering based approaches (Gupta et al., 2010). 

 

The k-means algorithm was supervised to use the local maxima 

as external seed points to initialize the iteration, instead of 

selecting it randomly by the user, as in the case of Ko et al. 

(2009). This was done because finding the pattern of individual 

tree in natural forest conditions is very difficult by selecting k 

clusters randomly using the simple k-means algorithm. Another 

advantage of avoiding trial and error based simple k-means 

approach is saving of machine memory and total run-time. The 

performance of the algorithm was improved by reducing the 

height value of the data points and external seed points by a 

half. The reason behind the reduction of height value is that it 

brings the normalized raw points as well as seed points closer in 

z-dimension and minimizes the intra-cluster variance. Thus, it 

fulfils the sole objective of the k-means. The reduction of the 

height to half was found empirically with trial and error based 

approach and have been kept constant for all the 7 plots studied. 

  

3.5.1.1 Extraction of external seed points and 

filtration of unwanted seed points:  Local maxima points were 

extracted as external seed points above 5 m height from the 

nDSM image having a gray value larger than the gray value of 

all its 8 neighbors. To avoid the overflow of seed points, the 

points that were too close to each other were filtered out based 

on threshold distance. The filtered local maxima as external 

seed points in the k-means algorithm were finally used. The 

threshold distance, varied depending on the forest conditions. 

The plot dominated by mature or old trees requires higher 

thresholds distance because local maxima from smaller peaks 

will most likely represent only branches, hence needs to be 

eliminated. Local maxima from a younger tree’s peak will most 

likely to be a treetop, hence, need smaller threshold distance. 

The value of threshold distance for younger trees with single 

and narrow crown at the tree top was found as approximately 2-

4 m (plots 2, 5 and 6) without any smoothing. While threshold 

distance for trees with relatively older ones having wider crown 

with more intermittent peaks at the tree top was found as 4-6 m 

(plots 1, 3, 4 and 7) with no smoothing. However, this also 

varies from dominant tree types.  

 

3.5.1.2 Modified k-means algorithm:  The modified k-

means algorithm applied to a set of 3-D vectors in the form of 

pseudo-code is given as follows. 

 

(i) Select normalized 3-D LIDAR points and external seed 

points above certain height (for example, above 5 m) 

(ii) For all the external seed points and that of the normalized 

LIDAR points, z = z*0.5, before initialization of the algorithm  

(iii) Set i = 1 

(iv) Select external seed points as a set of k means C1(1), C2 (1), 

..,Ck(1), where i = 1 in this case (mean vector for each cluster 

centre) 

(v) For each vector xi, begin computation D (xi, Ck(i), for each i 

= 1, .., k) and assign xi to the cluster Cj with the nearest 

Euclidian distance in 3-D space (means) 

(vi) i = i++ and update the means (Cj) to get a new set C1(i), C2 

(i), ..,Ck(i) 

(vii) Repeat steps (iii) to (v) until Ck(i) = Ck(i + 1) for all k 

(viii) For all the external seed points and that of the normalized 

LIDAR points, z = z/0.5 

 

3.5.2 3-D Reconstruction of tree clusters:  Once the tree 

clusters are generated, each cluster is reconstructed in 3-D space 

using the QHull approach (Barber et al., 1996). QHull is a 

general dimension code for computing convex hulls using 

Quickhull algorithm (Berg et al., 1997). Each 3-D tree crown 

cluster is constructed with triangular surface as a 3-D convex 

polytope. The convex hull of a set of points is the smallest 

convex set containing those points. For detailed introduction 

with example codes, see the book by O'Rourke (1994). The 

main advantages of Quickhull are its output of performance 

sensitivity (in terms of the number of extreme points), reduced 

space requirements, and floating-point error handling.  Thus, 3-

D convex polytope each tree crown is shown as a 3-D object 

with a triangular surface in the case of 3-D convex polytope. 

The shape of each polytope is the representation of the 

respective tree species. 
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3.6 Validation Method 

The automatically extracted tree tops of individual tree in each 

plot were validated with respect to field measured reference tree 

tops. A circular buffer of radius 3 m was created around each 

reference point, in Geographical Information System (GIS) 

environment. Only those extracted tree tops were considered 

which were close to a maximum of 5 m in 3-D Euclidean 

distance (ED) with that of the reference point. The extracted 

tree tops were intersected with that of the reference points of the 

identical plot within the buffered area. 3-D ED was calculated 

for each intersected point. Most suitable validation class as 

defined below was assigned for each intersected point. 

 

3.7 Validation Classes 

Following five validation classes were adopted for classifying 

the result and accuracy assessment.  

 

(i) Exact (E) - only one extracted tree top with respect to the 

nearby reference tree top. 3-D ED between the extracted tree 

top and reference tree top point is ≤ 3 m. 

(ii) Nearly Exact (NE) - one extracted tree top with respect to a 

reference tree top nearly at the same height level. 3-D ED 

between the extracted tree top and reference tree top is 3-5 m. 

(iii) Split - more than one neighboured detected treetops up to 

the 3-D ED of 5 m from a neighbouring reference tree top. 

(iv) Missing – includes those reference tree top points for which 

there is no extracted tree top point in the neighbourhood up to 

the 3-D ED of 5 m. It also includes the reference points for 

which there is no detected tree tops within the buffer around 

each reference tree top point. 

(v) Extra - includes those extracted tree top points within the 

field boundary for which there is no reference tree top point up 

to the 3-D ED of 5 m. It also includes those extracted points 

within the field boundary for which there is no reference point 

within the buffer around each reference tree top point. 

 

4. RESULTS AND DISCUSSION 

Before running the modified k-means algorithm, normalized 

raw LIDAR points and local maxima points below 5 m height 

were filtered. This was done to avoid the effect of low ground 

vegetation and other smaller objects during the clustering 

process. After running the algorithm over normalized LIDAR 

points using local maxima as external seed points, the 3-D 

cluster points of the corresponding tree were extracted in all the 

study plots. Accuracy assessment of the five major validation 

classes of automatically detected tree tops with reference to the 

field measured tree tops has been presented (Table 3 and 4). 

Two validation classes, namely, (‘Exact’ and ‘Nearly Exact’) 

played a key role in determining the two kind of accuracy. 

 

Plot  

ID E NE S M Ex ∑EP ∑ErP 

FD 

(%) 

1 17 4 8 11 15 50 29 

 

58 

2 15 10 6 24 24 70 45 

 

64.3 

3 17 5 3 14 8 44 22 

 

50 

4 11 3 2 8 9 30 16 

 

53.3 

5 10 30 7 61 6 97 57 

 

58.8 

6 13 21 9 13 12 67 33 

 

49.3 

7 2 9 3 19 21 48 37 

 

77.1 

 

Table 3. Distribution of validation classes and other attributes 

 

E = ‘Exact’ points, NE = ‘Nearly Exact’ points, S = ‘Split’ 

points, M = ‘Missing’ points, Ex = ‘Extra’ points, ∑EP = sum of 

extracted tree top points in the plot, ∑ErP = sum of extracted 

error tree top points in the plot, FD = False detected points = 

∑ErP*100/∑EP.  

 

Plot ID E+NE ∑EP RP P_acy  (%) U_acy (%) 

1 21 50 32 65.6 42.0 

2 25 70 49 51.0 35.7 

3 22 44 36 61.1 50.0 

4 14 30 22 63.6 46.7 

5 40 97 101 39.6 41.2 

6 34 67 47 72.3 50.7 

7 11 48 30 36.7 22.9 

 

Table 4. Plot level accuracy  

 

E+NE = sum of exact and nearly exact points in the plot, ∑EP = 

sum of extracted tree top points in the plot, RP = total reference 

tree top points in the plot, P_acy  (%) = producer’s accuracy = 

(E+NE)*100/RP and U_acy  (%) = user’s accuracy = 

(E+NE)*100/∑EP.  

 

It is visible from Table 4 that the producer’s and user’s 

accuracies in the broad-leaved deciduous dominated study plots 

(all plots except 3) are roughly varying between 37-72% and 

23-51%, respectively. In case of plot 3, which is dominated by 

evergreen coniferous trees, the producer’s and user’s accuracies 

are approximately 61% and 50%, respectively. There are 

highest accuracies obtained in plot 6. The high producer’s and 

user’s accuracies in case of plot 6 are detected due to fewer tree 

species which are present nearly the same height level. Due to 

this factor closely-matched seed points were generated that 

resulted in a comparatively more accurately positioned detected 

tree tops with respect to the referenced tree tops. The false 

detection is lowest (49%) in plot 6 and highest in plot 7 (Table 

3). In case of plots 2 and 7, the false detection is 64% and 77%, 

respectively, which is relatively higher than the remaining plots. 

It is noticeable that in both the plots, there are higher 

proportions of cherry trees. It is assumed that it was found 

difficult in automatic detection of small crowned and low height 

cherry trees. The accuracies are comparatively lower in case of 

study plots 5 and 7. In the former case (plot 5), it is mainly due 

to the mixed distribution multi-layered Oak and European beech 

with dense canopy. In the later case (plot 7), it is due to the 

presence of highly mixed tree species composition of varying 

age and high canopy density. In case of Oak dominated plot 5, 

the accuracies are not only lower but more or less in the same 

range. The average producer’s and user’s accuracies among all 

the study plots are 55.7% and 41.3%, respectively.  

 

Table 8 shows the percentage distribution of ‘Exact’ and 

‘Nearly Exact’ tree tops together and the corresponding 

reference tree tops for each species in all the 7 study plots. 
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Tree species R_Tree % E_Tree (E+NE) % 

Scots pine  13.9 86.4 

Norway spruce  2.2 42.9 

Douglas fir 1.6 60.0 

Hornbeam 9.5 66.7 

Cherry 23.7 40.0 

Oak 24.3 45.5 

Red Oak 0.9 33.3 

European Beech  21.1 47.8 

Black Locust 0.6 100.0 

Linden  0.9 33.3 

Silver Birch 0.3 100.0 

Sycamore Maple  0.9 33.3 

 

Table 5. % distribution of ‘Exact’ (E) +‘Nearly Exact’ (NE) tree 

tops together and corresponding reference tree tops (R_Tree). 

 

The species-wise distribution of the two accuracy determining 

validation classes (E+NE) gives a meaningful insight while 

assessing the accuracy. It is evident from Table 5 that the higher 

fractions of acceptable tree tops were detected for the evergreen 

Scots pine (86.4%). The detection of ‘Exact’ and ‘Nearly Exact’ 

tree tops is for few minor deciduous species like Black locust 

and Silver birch is highest (100%), while that of the other minor 

deciduous species like Red oak, Linden and Sycamore maple 

are 33.3% each. Average detection of ‘Exact’ and ‘Nearly 

Exact’ tree tops were found for the two other minor evergreen 

species, Norway spruce (42.9%) and Douglas fir (60%). 

Acceptable tree tops (E+NE) for Oak, Cherry, European beech 

and Hornbeam, which are the four major deciduous tree species 

in the study plots, are 45.5%, 40%, 47.8% and 66.7%, 

respectively. An overall 57.4% of trees were automatically 

detected together in the ‘Exact’ and ‘Nearly Exact’ validation 

class among the 7 test plots by applying the modified k-means 

algorithm.  It is clear from the Table 5 that modified algorithm 

yielded higher amount of ‘Exact’ (E) and ‘Nearly Exact’ (NE) 

tree tops for evergreen coniferous trees despite the fact that it 

constitutes only 17.7% of total tree cover among all the 7 study 

plots. The percentage fraction of the sum of the tree top points 

in ‘Exact’ and ‘Nearly Exact’ validation classes among all the 7 

test plots for the evergreen coniferous and deciduous trees are 

78.6% and 47.1%, respectively. More than 80% Scots pines 

were detected in all the study plots by applying the algorithm. 

This may be due to their dominance in the upper canopy layer. 

 

By applying supervised k-means approach, the number of trees 

to be extracted was decided by the number of external seed 

points used during the initialization of the k-means, which, in 

turn, is dependent on the distance threshold. During the 

investigation, it was found that the distance threshold is a forest 

dependent parameter. For example, the plot dominating with 

trees of wider canopies requires higher distance threshold 

because local maxima from smaller peaks will most likely 

represent only branches, hence needs to be eliminated. Whereas, 

local maxima from a peak in a plot containing trees with small 

canopies will most likely to be a treetop, hence requires 

comparatively smaller distance threshold.  

 

Approximate shape of the individual tree crown was represented 

in the form of 3-D convex polytope. The convex polytopes were 

computed from the delineated clusters using QHull approach 

(Barber et al., 1996). Two examples of European beech and 

Scots pine from plot 6 containing clusters and the respective 3-

D convex polytopes have been represented below in Figure 6 

and 7, respectively. The European beech and Scots pine in the 

given examples are roughly 17 m and 26 m in height. The 

canopy cover and density played a vital role in computing the 

geometrical shape of the two tree species.   

 

 
  

Figure 6. Cluster and convex polytope of a European beech 

 

 
 

Figure 7. Cluster and convex polytope of a Scots pine 

 

5. CONCLUSIONS 

Traditional k-means generates arbitrarily bad grouping of 

objects due to random seed selection procedure and repeated 

run of the algorithm after cluster analysis to meet the fitness 

criteria. The algorithm yields comparatively fair results by 

partitioning the LIDAR data after seeding is done externally and 

the height value of the LIDAR points are scaled down to half 

before initialization of the process (Gupta et al., 2010). There is 

an obvious advantage of the modified approach over the simple 

k-means or hierarchical based clustering (Gupta et al., 2010) or 

other approaches using k-means for single tree extraction by 

other investigators (Morsdorf et al., 2003; Ørka et al., 

2009).The formulation of validation method and classes were 

crucial in determining the accuracy.  

 

The multi-tier, mixed tree species distribution with varying age 

groups, low crown diameter and dense canopy closure were big 

challenge for the algorithmic performance in single tree 

extraction for different tree species. The average producer’s and 

user’s accuracies among all the plots are 55.7% and 41.3%, 

respectively. From Table 4 it is evident that the performance of 

the algorithm is average in such forest conditions. It was 

observed that higher accuracies are tending to occur if the trees 

in plot are at nearly same height and when there are fewer tree 

species, as in the case of plot 6. The results show that the 

algorithm for the upper tier trees worked better as compared to 

the trees lying beneath it. Further algorithmic improvement and 

more investigation in varying forest conditions will be done to 

obtain better accuracies in the future. 
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