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ABSTRACT:

The objective of this study is to investigate the sensitivity of synthetic aperture radar (SAR) backscatter signatures to crop bio-
physical variables.  The experimental data were collected over corn and soybean fields in eastern Ontario (Canada) during the 2008 
growing season. Remote sensing acquisitions consisted of TerraSAR-X dual-polarized stripmap data (X-band), RADARSAT-2 Fine 
beam quad-polarized data (C-band) and ALOS PALSAR dual-pol data (L-band), as well as the Compact Airborne Spectragrahic 
Imager (CASI) and SPOT-4 multi-spectral data. Plant variables, such as leaf area index (LAI) and surface volumetric soil moisture 
were measured to coincide with these acquisitions and key phenological growth stages. Analyses were conducted based on statistical 
correlation and a simple backscatter process model (the water cloud model). The results of this study show that the lower frequency 
bands, such as L and C, were closely related with LAI. For both corn and soybean crops, most C-band linear (HH, VV, HV) 
backscatter coefficients were correlated with LAI; backscatter increased with increasing LAI.  L-band backscatter at HH and HV 
polarizations produced the highest correlations with corn LAI (r=0.90—0.96). Conversely, these L-band polarizations  were only 
weakly correlated with soybean LAI. The higher frequency X-band was poorly correlated with both corn and soybean LAI. Based on 
these findings, the water cloud model was used to express C-band and L-band backscatter for the whole canopy as a function of LAI 
and surface soil moisture. 

1.  INTRODUCTION 

The monitoring of crop bio-physical variables is a very 
important task in agricultural management and in yield 
forecasting. Information from satellites can be exploited to 
assist in estimating key crop growth indicators including Leaf 
Area Index (LAI), biomass and crop height. LAI is an 
important indicator of agricultural productivity and a critical 
variable in crop growth models. Optical remote sensing data 
have been used to estimate LAI (Baret and Guyot, 1991; Brown 
et al., 2000; Chen and Cihlar, 1996). However, operational 
productivity and yield monitoring activities that rely solely on 
optical imagery are vulnerable to data gaps during critical crop 
growth stages as a result of unfavourable atmospheric 
conditions. Synthetic aperture radars (SARs) are unaffected by 
atmospheric haze and clouds. In addition to this oft-quoted 
advantage, SAR data also provide complementary and unique 
characterizations of vegetation when compared with the 
information provided by optical imagery.  

SAR response is dependent upon the sensor configuration 
including incidence angle, frequency and polarization. Target 
characteristics, most notably the soil and crop dielectric and 
geometric properties, influence scattering behaviour and the 
magnitude of the radar backscatter. Shorter SAR wavelengths 
such as X-band (~3 cm) and C-band (~6 cm) interact mainly 
with the top part of the canopy layers while long wavelengths 
such as L-band (~20 cm) have a greater penetration depth, 
interacting with the entire crop canopy and resulting in greater 
scattering contributions from the soil (Ulaby et al., 1984). 
Penetration depth depends on whether the bio-physical 
parameters of the scatters within a vegetation layer (e.g., 
canopy water content, size and geometry of the canopy 
components) scatter or attenuate the incident microwaves.  
Inoue et al. (2002) compared backscatter responses from multi-
frequency (Ka, Ku, X, C, and L) data in the context of several 
bio-physical variables of paddy rice. The results showed that 

LAI was best correlated with HH- and cross-polarization 
backscatter at C-band, while fresh biomass was best correlated 
with HH- and cross-polarizations at L-band. Conversely, the 
higher frequency bands (Ka, Ku, and X) were poorly correlated 
with LAI and biomass.  

Many experimental studies have linked the bio- and geo-
physical characteristics of crops with backscatter recorded by 
SAR sensors. (Clevers and van Leeuwen, 1996; Ferrazzoli et 
al., 1999; McNairn, 2002; Taconet et al., 1996). Most of these 
studies were carried out using C-band SAR due to the 
availability of this radar frequency on the first generation of 
satellite SAR sensors (ERS-1/2, RADARSAT-1). The SAR 
sensors currently operational include TerraSAR-X (X-band), 
COSMO-SkyMed (X-band), PALSAR/ALOS (L-band), 
ASAR/ENVISAT (C-band), RADARSAT-1/2 (C-band), and 
ERS-2 (C-band). With access to such a wealth of SAR 
satellites, it is now possible to study the sensitivity of multi-
frequency and multi-polarization data to LAI through the entire 
crop growth cycle. Detailed understanding of radar response to 
crops characteristics as a function of SAR parameters 
(wavelength, incidence, and polarization) is the first essential 
step in developing robust methods to retrieve crop bio-physical 
variables such as LAI.  

This study investigates the sensitivity of TerraSAR-X, 
PALSAR/ALOS, and RADARSAT-2 to crop bio-physical 
variables. The objective is to assess the radar response of corn 
and soybean crops with respect to radar wavelength (X, C, and 
L-bands) and polarization. Leaf area index (LAI) and surface 
volumetric soil moisture were measured to coincide with 
remote sensing acquisitions. In this paper, correlation analyses 
were conducted between radar backscatter and LAI. In addition, 
a semi-empirical backscatter process model (the water cloud 
model) was used to develop the relationship between SAR 
backscatter and target conditions, including LAI and soil 
moisture. 
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2. STUDY SITE AND DATA COLLECTION 

Two sites were selected near Ottawa, Ontario, Canada for field 
and satellite data collection, the Canadian Food Inspection 
Agency (CFIA) research farm and a region of private producers 
east of Casselman, Ontario. The terrain across these two study 
sites can be considered level to very gently sloping (<2%) with 
an average field size of 23 hectares. This region of eastern 
Canada consists largely of corn and soybean annual crop 
production. 

Ground truth measurements were performed on several selected 
sites. Within the CFIA site, 13 fields including 16 corn and 21 
soybean sample sites were selected. At the Casselman site, 20 
fields including 10 corn and 10 soybean sample sites were 
visited. Total LAI was measured at each sample site using an 
LAI-2000 (Li-Cor, Inc., Lincoln, NE) plant canopy analyser 
throughout the growing season. Volumetric surface soil 
moisture was measured coincident with each SAR acquisition, 
using Delta-T Theta probes with 6-cm waveguides. At each 
site, mean soil moisture was calculated from ten replicate 
moisture measurements. 

SAR images were acquired by TerraSAR-X, PALSAR/ALOS, 
and RADARSAT-2 satellites. During the 2008 growing season, 
two RADARSAT-2 Fine beam mode quad-pol images (July 6 
and 9) and one PALSAR/ALOS (July 2) were acquired over the 
CFIA site; two RADARSAT-2 Fine beam mode quad-pol 
images (August 23 and August 26) and one TerraSAR-X 
stripmap image (August 21) were acquired over the Casselman 
site. The pixel spacing of TerraSAR-X, PALSAR/ALOS, and 
RADARSAT-2 is 3 m, 12.5 m and 8 m, respectively. 
Characteristics of the SAR images used in this study are 
summarized in table 1.  

Date SAR sensor mode pol. incident 
angle 

07-02-
2008 

PALSAR L1.5 HH,HV 34º 

05-23-
2007 

PALSAR L1.5 HH,HV 21º 

07-09-
2008 

Radarsat-2 FQ20 Quad-
pol 

40º 

07-06-
2008 

Radarsat-2 FQ6 Quad-
pol 

26º 

08-21-
2008 

TerraSAR-X stripmap HV/VV 44º 

Table 1.Main characteristics of SAR images used in this study. 

Optical images were acquired by the Compact Airborne 
Spectragrahic Imager (CASI) and SPOT-4 multi-spectral 
satellite. CASI hyperspectral data were acquired on August 21, 
2008 over the Casselman site. SPOT-4 multi-spectral data were 
acquired on July 6, 2008 over the CFIA site. From the CASI 
and SPOT-4 data, the Modified Triangular Vegetation Index 
(MTVI2) (Haboudane et al., 2004) was calculated. A non-linear 
curve fitting procedure was used to establish an empirical 
equation for LAI estimation from MTVI2 (Liu et al., 2009): 

 

                     )2643.0946.0ln(247.6 MTVILAI  ! !"

 

Using this formula, LAI maps for the entire study site were 
generated from the optical data, with an RMSE of 0.76 and an 
R2 of 0.85. 

3. METHODOLOGY 

3.1 Image processing

Radiometric calibration of TerraSAR-X and PALSAR/ALOS 
images was carried out using the follow equations. These 
equations were used to convert the digital number of each pixel 

DNi into a backscatter coefficient ( ). 
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CalFactor is given in the TerraSAR-X data delivery package 
annotation file. It is processor and product type dependent. 

For PALSAR/ALOS, 
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The calibration factor (CF) for PALSAR L1.5 products is -83 
dB. The ALOS and TerraSAR data products were delivered in 
ground range. A 3 X 3 Enhance Lee filter was applied to both 
the ALOS and TerraSAR data to reduce speckle noise. 
RADARSAT-2 fine quad-pol SLC data were provided as 
compressed stokes matrix values for each slant range pixel.  
Prior to extracting the backscatter information, a boxcar filter 
with a 5 by 5 kernel size was applied to the polarimetric SAR 
scattering matrix data to suppress SAR speckle. After filtering 
the covariance matrix was converted to a symmetrized 
covariance matrix. From the symmetrized 3 by 3 covariance 
matrix, intensity backscatter (HH/HV/VV) was extracted. All 
the data were then geometrically corrected and geo-referenced 
using national road network vector data. 

3.2 Water cloud model 

The water cloud model was introduced first by Attema and 
Ulaby (1978). In the general version of the water cloud model, 

the power backscattered by the whole canopy ( ) can be 
represented as the incoherent sum of contributions of the 
vegetation, ( ), and the underlying soil, ( ).  This study 

selected the model modified by (Prévot et al., 1993) as it 
incorporates LAI as a descriptor of vegetation development. In 
this model, SAR backscatter from a canopy at a given incidence 
angle can be written as: 

0
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where  is the two-way attenuation through the canopy layer, L 
is the LAI, expressed in (m2m-2)  , the backscatter coefficients 

0 ,  and  are expressed in power units. A,B,C,D and E are 

model coefficients to be defined by experimental data. A, B and 

# 0
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0
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E are parameters which depend on canopy type. E is a positive 
value. Parameters C and D are dependent on soil moisture. 

 
4. RESULTS AND DISCUSSION 

Two dates of LAI maps (July 6 and August 21) were near-
coincident with SAR acquisitions on July 2 (ALOS), July 6 
(RADARSAT-2), July 9 (RADARSAT-2) and August 21 
(TerraSAR). With LAI maps derived from optical data, LAI 
was estimated on a detailed pixel by pixel basis. Definiens 
software was then used to segment these maps into zones of 
homogeneous LAI for each corn and soybean field. These 
homogeneous zones were used as the primary sampling units. 
The average SAR backscatter and the mean LAI for each 
sampling unit were extracted for both corn and soybean crops. 

4.1 Correlation analysis between SAR data and LAI

To quantify the relationship between SAR backscatter and LAI, 
and to assess the sensitivity of SAR frequency and polarization 
to this crop growth parameter, correlation analyses were 
conducted. Scattering from within the crop canopy and the 
subsequent scattering back to the radar sensor is related to the 
physical structure of the scattering elements of the canopy, as 
well as their dielectric properties. Consequently a strong 
correlation between plant variables such as LAI and radar 
return has physical meaning. Table 2 provides the simple 
correlation analysis results for each SAR data set.  

 Corn Soybean 
PALSAR/ALOS   
HH 0.92 0.28 
HV 0.96 0.26 
RADARSAT-2 FQ20   
HH 0.72 0.60 
VV 0.79 0.73 
HV 0.79 0.47 
RADARSAT-2 FQ6   
HH 0.68 0.80 
VV 0.72 0.62 
HV 0.90 0.58 
TerraSAR-X   
VV -0.11 -0.20 
HV   0.03 -0.65 
Table 2. Simple correlation coefficients (r) between SAR data 

and LAI. 
4.1.1 SAR backscatter from corn crops 
For corn, a strong correlation was found for both L-band and C-
bands. The highest correlation coefficients (r=0.90—0.96) were 
reported for L-HH and L-HV backscatter and for C-HV 
backscatter from the RADARSAT-2 FQ6 mode. Figure 1 plots 
L-HH, L-HV and C-HV backscatter against corn LAI. 
Backscatter at these frequencies and polarizations were strongly 
linearly correlated with LAI. The coefficients of determination 
(R2) were 0.92, 0.85 and 0.80 for HV and HH at L-band and 
HV at C-band, respectively.  

Slightly lower correlations (r=0.68—0.79) were reported for 
corn for all C-band linear polarizations at the shallower 
RADARSAT-2 FQ20 mode, as well as for the linear like-
polarizations (HH,VV) at the steeper RADARSAT-2 FQ6 
mode. Backscatter at X-band was poorly correlated with corn 
LAI (r < 0.03) regardless of polarization.  
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Figure 1 Correlation between L-HH, L-HV and C-HV (FQ6 

mode) backscatter and corn LAI. 
4.1.2 SAR backscatter from soybean crops 
For soybeans, SAR backscatter was only weakly correlated 
with LAI. The highest correlations were reported for the C-
band data (r=0.58-0.80). Backscatter from L-band and X-band 
had no significant correlation with LAI. Figure 2 illustrates the 
linear relationship between HH, VV and HV backscatter at C-
band (RADARSAT-2 FQ6 mode) and LAI. The best 
correlations were observed for C-HH backscatter (R2=0.63). 
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Figure 2 Correlation between C-band HH, VV and HV 
backscatter (RADARSAT-2 FQ6 mode) and LAI. 

In summary, the lower frequencies such as L- and C-band were 
correlated with LAI, while the higher frequency X-band was 
poorly correlated. These results may be explained by the 
wavelength relative to the size of the crop scattering elements, 
but also by the difference in the canopy penetration. High 
frequency X-band provides little canopy penentration.  

4.2 Water cloud model 

The backscatter signal from vegetated surfaces is affected by 
many factors, including the physical structure of the plants and 
the canopy (biomass, leaf size, stem density, LAI, etc.) as well 
as the surface volumetric moisture of the soil below the canopy. 
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Direct scattering from the canopy and the soil, as well as 
multiple interactions between the vegetation components and 
the soil, all contribute to the magnitude and scattering 
characteristics of the SAR response. Simple linear or non-linear 
expressions fail to adequately express the interaction of 
microwaves with a complex vegetation-over-soil target. A 
physically-based modeling approach is essential for analyzing 
the interaction of crop biological variables and SAR backscatter 
over a wide range of crop conditions and sensor configurations. 

In this study, L- and C-band backscatter at certain polarizations 
exhibited a strong correlation with LAI. Some of the 
unexplained error in these simple correlations may be 
attributable to contributions from the soil moisture. Therefore, 
the water cloud model was used to model the effect of LAI and 
surface soil moisture on SAR backscatter. 

Data needed to parameterize soil moisture in the water cloud 
model were available from the in situ measurements taken 
coincident with the RADARSAT-2 and ALOS overpasses. No 
in situ measurements were available for the August 21 
TerraSAR-X acquisition. Thus TerraSAR-X data were not 
implemented into the water cloud model. 

For the corn and soybean crops, the mean backscatter was 
extracted for a 70 x 70 metre area centred on the soil moisture 
sampling sites. A similar approach was taken to calculate 
average LAI for each site, from the LAI maps derived from the 
optical data.   

To overcome instability problems caused by possible 
correlations between parameters, a two-step procedure was 
taken. The model parameter D defining the radar sensitivity to 
soil moisture was first determined using an independent data 
set. Once parameter D was fixed, the remaining parameters A, 
B, E, and C were then simultaneously determined. Three of the 
soybean fields were seeded late because of an unusually rainy 
spring season, and thus for eleven soybean sites, the soybean 
crop had not yet emerged at the time of the June 12 FQ6 and 
June 15 FQ20 RADARSAT-2 acquisitions. For the 
PALSAR/ALOS acquisition on May 23, 2007, soil moisture 
measurements were taken during the satellite overpass. At that 
time, most of fields were bare as crops had not yet emerged. 
Based on these data, a linear regression model was developed to 
describe the relationship between SAR backscatter and soil 
moisture in the absence of vegetation. This process was used to 
determine and fix the parameter D.  Next, the remaining 
parameters in the model, A, B, E and C, were determined using 
a non-linear least squares method in the Matlab Curve Fitting 
Toolbox environment, based on the Levenberg-marquardt 
algorithm.  

The degree of model fit was indicated by the coefficient of 
determination (R2) and RMSE, and these statistics are provided 
in Table 3. 

SAR  

Backscatter 

Corn Soybeans 

 Coefficient of 
determination 
(R2) 

RMSE 
(power) 

Coefficient of
determination 
(R2) 

RMSE 
(power) 

PALSAR/ALOS 

HH 0.78 0.013 0.44 0.019 

HV 0.81 0.002 0.38 0.005 

RADARSAT-2 FQ20  

HH 0.63 0.026 0.10 0.022 

HV 0.78 0.004 0.07 0.003 

RADARSAT-2 FQ6 

HH 0.26 0.038 0.43 0.019 

HV 0.71 0.004 0.38 0.005 

Table 3. Statistics describing the fit of the water cloud model to 
SAR backscatter 

A good model fit was achieved for most SAR configurations for 
corn, with coefficients of determination (R2) reaching 0.63-
0.81. The one exception was the poor correlation for C-HH 
backscatter (RADARSAT-2 FQ6).  For soybeans, the water 
cloud model provided only weak correlations for all SAR 
frequencies and polarizations. In figure 3, the fitted models 
using the L-HV backscatter are plotted against the observed 
data for corn. 

Figure 3. Modeled and observed L-HV backscatter expressed as 
a function of soil moisture and LAI for corn. 

For corn, the highest correlations were again reported for L-
band backscatter at HH and HV polarizations. Slightly lower 
correlations were reported at most C-band polarizations except 
for C-HH backscatter (RADARSAT-2 FQ6 mode). Backscatter 
from soybeans, regardless of frequency or polarization, were 
not significantly correlated with LAI. 

5. CONCLUSION

This study investigated the relationship between multi-
frequency SAR backscatter and LAI for corn and soybean 
crops. TerraSAR-X dual-polarized stripmap data (X-band), 
RADARSAT-2 Fine beam quad-polarized data (C-band) and 
ALOS PALSAR dual-pol data (L-band), as well as optical data 
including the Compact Airborne Spectragrahic Imager (CASI) 
and SPOT-4 multi-spectral data were acquired during the 2008 
crop growing season. SAR backscatter was extracted from each 
SAR image. LAI maps were derived from the optical images at 
a detailed pixel level. Object-based segmentation of the LAI 
maps defined the basic sampling unit upon which mean LAI 
and SAR responses were calculated.  

A statistical correlation analyses quantified the relationship 
between the SAR parameters and LAI. High correlation 
coefficients with corn LAI were found for L-band and C-band. 
The highest correlation coefficients (r=0.90—0.96) were 
reported for L-HH, L-HV and C-HV (RADARSAT-2 FQ6 
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mode). SAR backscatter was only weakly correlated with 
soybean LAI. The highest correlations were reported at C-band 
(r=0.58-0.80). X-band backscatter was poorly correlated with 
both corn and soybean LAI. 

The water cloud model was used to parameterize the 
relationship between LAI and soil moisture, and SAR 
backscatter at L- and C-band. The correlation between SAR 
backscatter and LAI didn’t show significant improvement 
following implementation of the model. Further research will 
couple soil moisture models and/or in situ network data with 
the water cloud model to improve parameterization of the 
contribution from the underlying soil.  
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