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ABSTRACT: 
 
Differential synthetic aperture radar interferometry (D-InSAR), is a remote sensing technique that could measure earth surface 
deformation and has gained extensive use along with its development as a technique and subject, from classical to advanced D-
InSAR. The main principles of both were concisely depicted and the differences and relations between highlighted. Then an 
introductive review concerning applications of InSAR technology in China and obstacles therein to make the technique operational  
for coal-mining induced deformation was made. The other method developed for a more accurate InSAR application, consisting in 
GPS assisted and multi-platform SAR interferometry, atmospheric artefact modelling are introduced, and ended up with the 
conclusion part where the main limitations were put forward. 
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1. INTRODUCTION 

Repeated SAR Interferometry (InSAR) technique, based on the 
combination of two radar images, has been exposed by Graham 
(Graham, 1974), allowing not only the retrieval of a Digital 
Elevation Model (Zebker et al., 1986), but also large-scale 
surface deformation monitoring (Differential InSAR, D-InSAR). 
The high density of measurement, with an accuracy of 1cm for 
single interferogram, allows generation of a map of ground 
deformation (Gabriel et al., 1989; Massonnet et al., 1993; 
Massonnet et al., 1995; Carnec et al., 1999).  
 
The principle of D-InSAR( hereafter referred to as Classical D-
InSAR, compared with the Advanced D-InSAR techniques to 
be detailed in Section 2) is to first obtain two interferograms of 
a study area, called Topo-defo interferogram and Topo 
respectively, and then make a difference between them to detect 
the deforming information if any. Just as the name implying, 
there are topographic and deforming information in the former, 
while topographic information only in the latter, which can be 
formed either through synthesizing an existed DEM (2-pass D-
InSAR), or two SAR images acquired before the time 
deformation taking place. 
 
Besides the above mentioned, Classical D-InSAR has gained 
extensive use elsewhere (Perski, 1998; Strozzi et al., 1999; Ge 
et al., 2008) and has become one of the efficient tools in surface 
deformation monitoring, among which there are GPS, VLBI�
conventional precise levelling and theodolite survey, EDM and 
remote electronic monitoring, to name a few. 
 
Classical D-InSAR, however, faces several limitations 
essentially due to temporal and geometric decorrelation, 
atmospheric inhomogeneity, besides the presence of 
uncompensated topography due to the limited accuracy of DEM 
utilized. When random motion takes place within SAR-imaging 
pixels, such as those caused by crop growth, leaf fluctuation, 

interferometric phases will become noisy, thus causing temporal 
decorreltation, which will certainly prohibit us from accurate 
low-velocity deformation monitoring, where differential 
interferograms are forced to have large temporal baseline. 
Geometric decorrelation happens when there exists the 
excessive separation between satellites’ orbits� the 
perpendicular baseline, B��, which will significantly reduce 
the number of image pairs suitable for interferometric 
application. (Jarosz et al., 2004). An additional limitation, 
atmospheric inhomogeneity, common to both large or small 
baseline interferograms, creates an atmospheric phase screen 
(APS) superimposed on each SAR image that can sometimes 
seriously degrade the quality of deformation estimation (Zebker 
1997; Goldstein, 1995; Williams, 1998; Hanssen,1998; Carnec 
C. et al., 1996). 
Fortunately, these limitations are well addressed in the 
advanced D-InSAR techniques, which will be introduced in the 
following. 
 
 

2. ADVANCED D-INSAR TECHNIQUES 

During several yeas of study, S.Usai et al (Usai et al., 1997;  
1998;1999) found that some certain samples, mainly of 
anthropogenic nature, such as buildings, bridges, railways and 
roads, highly and reliably coherent in spite of the long-time 
interval, manifesting themselves as strong, nearly point-like 
bright dots in an almost completely decorrelated interferograms. 
The Advanced D-InSAR techniques then hunt for and utilize 
these pointwise targets to track the temporal evolution of the 
detected deformation, to which the scientific community has 
shown great interests.  
 
Based on the coherent-target hunting strategy and the 
processing method for signal-of-interest isolation, the advanced 
techniques recently developed are classified as four types, i.e. 
Least Square approach, Permanent Scatterer SAR 
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Interferometry, Small BAseline Subset, Coherent Pixel 
Technique, which will be introduced chronologically in some 
detail, together with the differences and relations between each. 
2.1 Least Square database approach (LS approach) 

After analyzing the phase stability of some man-made features, 
S.Usai et al (Usai et al., 1997,1999,2000) presented a new 
approach, known as Least Square approach (LS), for the long-
term monitoring of terrain deformations with D-InSAR. This 
method uses a database of interferograms, and by solving all the 
deformation velocities as a unique least squares problem 
provides a chronologically ordered sequence, describing the 
evolution of the deformation pattern in time (Usai, 2002). 
 
2.1.1 Main principle 
The input for the least squares adjustment is a set y=[I1,…,IN] of 
N unwrapped interferometric deformation maps(i.e., the 
unwrapped interferograms are compensated for topographic and 
flat-earth phases), all coregistered at subpixel level, generated 
from M SAR images taken at days x=[d1,…, dM]. The day d1 
corresponding to the first image is taken as reference and the 
deformations at each of the other (M-1) days relative to this day 
considered as solutions of the problem: 

y=Ax                                 (1) 
where in x the element d1 not been considered. 
 
In the system matrix A, each row corresponds to an 
interferogram, while the columns correspond to the days. For 
interferogram Ik=Idi-Idj, the values on row k are all zero except at 
columns i and j, being +1 and -1 respectively and A an 
incidence like matrix, directly depending on the set of 
interferograms generated form the M SAR images. 
 
The unweighted least squares solution x of Eq.1 is 
straightforward: 

x=(ATA)-1ATy           Qx=(ATA)-1            (2) 
 

2.1.2 Some notes on LS approach 
The LS approach has been applied to measure terrain 
displacements in the period 1993-1999 at the Phlegrean Fields 
(Naples, Italy), using a set of 20 ERS-1/2 SAR images, and 43 
interferograms generated(Usai, 2002; Usai, 2003). The authors 
made use of an external DEM to obtain the differential 
interferograms and found that residual topography had caused 
systemtic effects in the data. In addition, during the processing, 
a closed-loop method was used to detect and remove image- 
and interferogram-related biases. In fact, according to Usai, 
(Usai, 2001) two kinds of biases can be identified: the image-
related ones, like for example those caused by atmospheric 
disturbances; and the interferogram-related  ones, i.e. those 
which have been produced in the interferometric combination of 
two images, most probably by phase-unwrapping errors. 
 
2.2 Permanent Scatterer (PS) 

The Permanent Scatterer technique, developed at the 
‘Politecnico di Milano’ (Milan, Italy) (Ferretti et al., 1999; 
2000; 2001), is the first of a family of similar advanced 
interferometric techniques-Permanent Scatterer Interferometry 
(PSI). 
 
Given N+1 images, a set of N differential interferograms is 
generated with respect to a single master. High temporal and 
normal baseline interferograms (affected by a high decorrelation 
noise) are, thus, part of the dataset. The approach focused on 
privileged image pixels that, even in these ‘extreme conditions’, 

still exhibit a low noise term, thus the so-called Permanent 
Scatterers. With PS technique, pixels are selected from the 
study of its amplitude stability along the whole set of images 
(typically >30). Therefore, the maximum resolution of the SLC 
images is preserved (Ferretti et al., 2001) 
After PS candidates selection, a linear model is adjusted to the 
data to estimate the deformation linear velocity and possible 
DEM errors for each PS Candidate. Then the atmospheric phase 
screen (APS) for the master image and the nonlinear motion 
contribution and APS for each image are computed through a 
spatio-temporal filtering. After estimation and removal of all the 
APS superimposed on the data, one can identify more PSs and 
repeating the previous steps allows getting the whole 
deformation time series and average LOS displacement rate of 
every single PS, and a refining DEM with sub-metric precision 
of the exact height of the object corresponding to the PSs. 
 
2.3 Small BAseline Subset (SBAS) 

The Small Baseline Subset (SBAS) approach, proposed by 
Berardino et al. (2001; 2002), extends the Least Squares 
approach (Usai, 2001; 2002; 2003; Lundgren et al, 2001) to the 
case of multiple small baseline acquisition subsets. The key 
point, in addition to the use of multi-look interferograms, is that 
the data pairs involved in the generation of the interferograms 
are carefully selected in order to minimize the spatial baseline, 
thus mitigating the decorrelation phenomenon and topography 
errors. The Singular Value Decomposition (SVD) method is 
applied to link otherwise independent SAR datasets separated 
by large baselines. The SBAS method was originally used to 
investigate large scale deformations with spatial resolution of 
about 100m*100m, calculating the time sequence deformation 
and estimating DEM error and the atmospheric artifact in a 
similar way as PS. O.Mora et al (O.Mora et al., 2002) promoted 
a complementary approach, utilizing two different sets of data 
generated at low (muliti-look) and full resolution (single-look) 
respectively, to monitor localized deformation. The former are 
used to identify and estimate possible atmospheric phase 
artifacts and low-wavenumber deformation patterns based on 
SVD SBAS method or CPT(Mora et al., 2003); the latter to 
detect, on the high-resolution residual phase components, 
structures highly coherent over time like buildings, rocks, lava 
structures, etc.  
 
2.4 Coherent Pixels Technique (CPT) 

Developed by O.Mora et al (2003), original CPT gained its first 
use (Mora et al., 2001) in the long-term subsidence monitoring 
of an area of small town in Spanish, choosing the temporal-
coherence as criterion for permanent scatterers selection only to 
make flexible the SAR images requirement in PS. The results, 
utilizing seven SAR images, turned out to be satisfactory and 
coincided well with the DGPS measurements. 
 
Recently, CPT has been improved (Blanco et al., 2007; Duque 
et al., 2007) into an operational advanced technique for terrain 
deformation mapping, in terms of linear and nonlinear 
deformation extraction, robustness with DEM error, thus 
allowing DEM refining, and atmospheric phase screen (APS) 
removal. P.Blanco et al (2008) concluded this approach and 
detailed the main steps, such as optimal interferogram sets 
selection, coherent pixels selection, linear and nonlinear blocks 
for a full deformation extraction. The related algorithms consist 
of Delaunay triangulation and Minimum Spanning Tree (MST) 
for best combination of interferograms selection, Conjugate 
Gradient Method (CGM) for Phase Unwrapping, multi-layer for 
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liable estimation of linear deformation. What’s more, by 
integrating the amplitude-based criterion for pixels selection, 
CPT can provide full-resolution deformation. In some sense, we 
can say CPT is a well-integrated technique of the main PSI 
techniques. 
 
2.5 Other techniques 

Some other multiple-interferogram techniques for deformation 
monitoring emerge and gained many uses as well, including, 
Interferometric Points Targets Analysis (IPTA) developed by 
GAMMA remote sensing research group (Wegmüller et al., 
2000; Werner et al., 2003) in Switzerland, Spatio-Temporal 
Unwrapping Network (STUN) (Kampes et al., 2005) and phase 
gradient  approach to stacking interferograms (Sandwell et al., 
1998; Raucoules et al., 2003; Rocca, 2007). Moreover, there is 
STBAS (Small Temporal BAseline Subset) for monitoring of 
wetland’s water level changes (Hong et al., 2008).  
 
2.6 Remarks on Advanced D-InSAR techniques 

Compared with Classical D-InSAR, which employs several 
SAR images (4 at most for the 4-pass version D-InSAR) to 
analyze a single deformation episode, Advanced D-InSAR 
technique fully exploits the SAR archives available, and we 
may consider it a postprocessing step (Usai, 2003; Berardino et 
al., 2002) applied to the set of D-InSAR interfrograms that may 
be generated via already available interferometric data 
processing tools. Based on this, several considerations are in 
order.  
 
2.6.1 Foundation of Advanced D-InSAR 
The input of Advanced D-InSAR is a set of Differential 
interferograms. Therefore, a careful D-InSAR processing has to 
be implemented, controlling the quality of all major processing 
steps (e.g. image co-registration, phase unwrapping, etc.), 
guaranteeing a high quality set of input data for the Advanced 
techniques. This is of particular significance for PS method, 
where no compulsive constraints are enforced on temporal and 
spatial baseline and any noisy area existed will introduce mis-
registration problems. Phase unwrapping, on the other hand, 
always remaining the most delicate issue, behaves as a sparse 
and irregularly sampled data unwrapping problem in advanced 
techniques, and can be performed following a two-step 
algorithm (Ghiglia et al., 1998)� 
1) estimation of the unwrapped phase differences between 
neighboring pixels; 2) integration of the gradient using one of 
the known techniques, such as minimum cost flow (Costantini, 
1998), weighted least mean squares (Ghiglia et al., 1998; 
Spagnolini, 1995), and branch and cut (Goldstein et al., 1988). 
 
2.6.2 Data acquisition 
Besides the large stack of SAR images required, uniform 
distribution of temporal and spatial baselines are always 
preferred in order to acquire more accurate and reliable 
information about the ongoing deformation. However, global 
availability of SAR acquisitions is somewhat limited. Many 
areas have few or no acquisitions unless the area of interest was 
previously tasked for imaging. For example, there are subsiding 
areas in Mexico and in the People’s Republic of China that 
have significant aquifer-system compaction problems, however, 
with limited ERS SAR coverage. For Envisat SAR coverage, 
the various selectable polarizations of the transmitted 
electromagnetic SAR signal may limit the availability of SAR-
image pairs suitable for InSAR processing (Galloway et al., 
2007). 

2.7 Difference and similarity among Advanced techniques 

Besides several differences among the techniques detailed 
above, mainly relying in data requirements (minimum number 
of SAR images, more than thirty needed for PS for a well 
statistics estimation of phase stability), the limitations on 
baseline length (SBAS, LS, CPT), the need of multilooking 
(SBAS, LS, CPT), the multi-pair approach (SBAS, LS, CPT) 
for interferogram formation, there exist several similarities 
among them. 
 
2.7.1 Deformation extraction strategy 
All the techniques extract deformation through a two-step way, 
linear and nonlinear. In fact, we’d better regard the introduction 
of a linear model as a way to clean phase to make easier 
nonlinear estimation. Such a strategy, dividing and conquering, 
running through the whole signal isolation process, does help a 
lot (Blanco et al., 2007). 
 
2.7.2 APS estimation and removal 
The output of Advanced D-InSAR includes LOS displacement 
rate, DEM error, and Atmospheric disturbance, with the latter 
two byproducts indicating great superiority compared with 
Classical D-InSAR, and in some way justifying the need of a 
large number of images (Ferretti et al., 2000). 
 
After the estimation and removal of linear phase (linear 
deformation and DEM error phases), theoretically, three 
contributions still remain: APS, nonlinear deformation and 
noise. In practice, however, the noise contribution was 
mitigated to the minimum either due to the multilooking process 
in SBAS and CPT, or due to the neighboring differencing in PS 
and CPT, thus only APS being the target to be cleaned. Based 
on the observation that the atmospheric signal phase component 
is characterized by a high spatial correlation and exhibits a 
significantly low temporal correlation (random), the desired 
nonlinear deformation is estimated as the result of the cascade 
of a spatial low-pass and a temporal high-pass filtering 
operation, with APS removed( Ferretti et al., 2001; Berardino et 
al., 2002; Mora et al.,2003).  
 
2.7.3 Multi-plantform interferometry 
The frequency difference between ERS and EnviSAT, although 
a small shift, limits the possibilities of the generation of useful 
cross-interferograms (Monti et al., 2000). For a flat surface, 
theoretically, it’s possible to compensate for the 31 MHz center 
frequency difference unless the normal baseline reaches 2100m 
(Gatelli et al., 1994). Although some researchers found several 
pairs of images for successful crossing-interferometry by 
searching, with delicacy, the whole archives(Santoro et al, 
2007) , we should note that the consequence of such large 
baselines are, on the one hand, the restrictive elevation of 
ambiguity with respect to the image, around 4.5m, which makes 
the interferograms sensitive to topography. On the other hand, 
interferograms with large baseline are extremely sensitive to 
volumetric decorrelation, which poses great limitation in urban 
areas.  
 
Again, Advance DInSAR techniques circumvent the above 
dilemma elegantly, exploiting pointwise targets, as in the case 
of the Permanent Scatterer approach (Arrigoni et al., 2003; 
Ferretti et al., 2004; Wegmuller et al., 2005) that allows 
investigating the temporal evolution of the detected 
displacements by analyzing full-resolution (single look) 
interferograms, or in the SBAS and CPT cases, by considering 
ERS and EnviSAT as independent subsets, searching for a least 
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squares solution with a minimum norm deformation velocity 
vector constraint (Berardino et al., 2004; Pepe et al., 2005; 
Mallorquí et al., 2005; Blanco et al., 2006) 
 
 

3. APPLICATION OF INSAR TECHNOLOGY IN 
CHINA  

InSAR technique has penetrated through almost every surface-
deformation related monitoring, thanks to the Advanced D-
InSAR technique. In general, InSAR has evolved to be able to 
monitor and track deformation, with great elegance, of different 
causes including tectonic seismic and volcanic activity, ice and 
rock glacier motion, slope instability, and subsidence caused by 
ground water pumping, mining, hydrocarbon extraction, and 
natural compaction in high precision and reliability. 
 
In the late 1990s, InSAR technology was introduced into China 
and gained firstly an experimental use and then became 
operational mainly on the subsidence taking place in urban area 
due to either water pumping and/or underground construction, 
besides the active tectonic caused deformation (Zhao et al.,2009; 
He et al.,2006; Xu et al.,2008 ) and co-seismic deformation 
extraction and modeling (Shan et al., 2002; Ji et al., 2009). 
Recently, Advanced D-InSAR techniques gain their use in long-
term series deformation monitoring in urban areas (Fang et al., 
2009; Li et al., 2009; Jiang et al., 2009; Huang et al., 2008). 
 
InSAR technique has also been used to monitor mining-induced 
subsidence, with the main squeeze being coal mining in China 
(Cao et al., 2008) in a cost-effective way due to the vast area 
influenced, which could be considered a startup and 
experimental and there’s certainly a long way to go for the 
operational use. The main reasons may consist in the limited 
data acquisition and the inherent limitation of InSAR for large-
gradient and/or vegetated surface subsidence monitoring. 
 
 

4.  GPS AND D-INSAR INTEGRATION  

Due to the unknown phase ambiguity number and the limited 
knowledge of the satellites’s position, measurements from D-
InSAR are essentially relative ones.  In order to relate these 
measurements to a reference datum, a priori information is 
required, such as Ground Control Points, absolute deformations 
from GPS or other geodetic techniques. What’s more, both 
atmospheric artifacts and orbital fringes feature high spatial 
correlation, since their correlation typically exceeds 1km. Local 
spurious components are compensated for by the double 
difference computation inherent in any Advanced DInSAR 
analysis, but regional signals affecting hundreds or even 
thousands of square kilometers can be difficult to discriminate 
without a priori information, thus justifying the 
complementariness between GPS and DInSAR data, which can 
be used in synergy to map surface deformation (Prati et al., 
2009). 
 
The idea of InSAR and GPS integration was perhaps first 
suggested in 1997 (Bock et al., 1997; 1998). Ge et al (1997, 
2000) proposed a DIDP approach for this integration. A 
methodology that uses Markov Random Field (MRF) based 
regularization and simulating annealing optimization was then 
proposed by Sverrir Guemundsson(2000) to unwrap InSAR 
images, obtaining a high-resolution 3-D motion field from 
combined GPS and interferometric observations. With GPS, 
MODIS and MORIS data, Li et al (Li, 2005a; Li et at., 2005b) 

produced regional water vapor model with a spatial resolution 
of 1km*1km, which, applied to the ERS-2 repeat-pass data, 
assisted in discriminating geophysical signals from atmospheric 
artifacts. Doin et al. (2009) proposed another approach, using 
global atmospheric models (GAM), to model and remove the 
stratified tropospheric delay efficiently. 
 
 

5.  DISCUSSIONS AND CONCLUSION 

 
D-InSAR technology has demonstrated unsurpassed capabilities 
of the technique in terms of deformation monitoring, and has 
embedded itself one of the most widely used geodesy 
techniques, combining the characteristics of large-scale imaging 
and high-accuracy quantitative observations, particularly of 
dynamic processes. However, there still exist several limitations 
at present, related as follows:  
A) Excessive subsidence (i.e., big phase gradient) taking place 
in one repeat cycle of satellite makes impossible deformation 
measurement without a priori information; 
B) A systemtic errors introduced during the D-InSAR process, 
such as  caused by mis-coregistration, orbit perturbation, 
inaccurate topography model, phase unwrapping, atmospheric 
artifact, remains unknown, and the precision evaluation of the 
end-product at present only comparatively known through a so-
called Quantitative Analysis step (i.e., making comparisons with 
respect to traditional implementation geodetic method); 
C) Characteristics of PSs, utilized in PSI techniques, require a 
thoroughly study, in order to geocode and interpret the studied 
PS deformation more accurately to the local structure; 
D) In some cases, such as the coal mining influenced area, 
where typically displacement in all the 3-D takes place, making 
subsidence not so dominating, chances are unpractical 
deforming information will be acquired. 
 
With the newly launched satellites and some ongoing research 
activity, the above-mentioned limitations can be addressed, to a 
certain extent at least, if not completely. For example, the newly 
launched four SAR satellites, operating at X-band, feature short 
repeat cycles: three belong to the dual-use Cosmo-SKymed 
constellation operated by the Italian Space Agency, with a 4-day 
cycle, and one is the German TerraSAR-X, with the cycle of 11 
days could make less likely excess subsidence. What’s more, 
some ongoing research activity are aiming at the study of the 
nature of PSs, and striking results have already been reported 
(Ferretti et al., 2005). With more knowledge of PSs, cross-
frequency and/or cross-incidence angle could be possible and 
extremely promising. We are surely convinced that all these 
existed and upcoming efforts will lead to an operational and 
routine use of Spaceborne InSAR technology for ground surface 
deformation monitoring. 
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