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ABSTRACT: 
 
No technique has so far been developed to quantify biomass carbon sources and sinks over large areas.  Among the remote sensing 
techniques tested, the use of multisensors, and spatial as well as spectral characteristics of data have demonstrated strong potential 
for biomass estimation.  However, the use of multisensor data accompanied by spatial data processing has not been fully investigated 
because of the unavailability of appropriate data sets and the complexity of image processing techniques for combining multisensor 
data with the analysis of spatial characteristics. This research investigates the texture parameters of two high (10m) resolution optical 
sensors AVNIR-2 and SPOT-5 in different processing combinations for biomass estimation. Multiple regression models are 
developed between image parameters extracted from the different stages of image processing and the biomass of 50 field plots, 
which was estimated using a newly developed “Allometric Model” for the study region. 
 
The results demonstrate a clear improvement in biomass estimation using the texture parameters of a single sensor (r2=0.854 and 
RMSE=38.54) compared to the highest accuracy obtained from simple spectral reflectance (r2=0.494) and simple spectral band ratios 
(r2=0.59). This accuracy was further improved, to obtain a very promising accuracy using texture parameters of both sensors together 
(r2=0.897 and RMSE=32.38), the texture parameters from the PCA of both sensors (r2=0.851 and RMSE=38.80) and the texture 
parameters from the averaging of both sensors (r2=0.911 and RMSE=30.10). Improved accuracy was also observed using the simple 
ratio of texture parameters of AVNIR-2 (r2=0.899 and RMSE=32.04) and SPOT-5 (r2=0.916) and finally a surprisingly high 
accuracy (r2=0.939 and RMSE=24.77) was achieved using the ratios of the texture parameter of both sensors together.  
 
 

1. INTRODUCTION 

Remote sensing is the most promising technique to estimate 
biomass at local, regional and global scales, thereby helping to 
reduce the uncertainties associated with the role of forests in 
key environmental issues (Brown et al, 1989; Rosenqvist et al 
2003). A number of studies has been carried out using different 
types of sensors including optical (Mukkönen and Heiskännen, 
2005; Fuchs et al 2009;  Foody et al, 2003; Dong et al, 2003) 
SAR (Santos et al, 2003; Kuplich et al, 2005), and Lidar 
sensors (Zhao et al 2009) for biomass/forest parameter 
estimation. Apart from the use of a single sensor, combining 
information from multiple sensors has yielded promising results 
for the estimation of forest parameters/biomass (Rosenqvist et 
al, 2003; Hyde et al, 2006; Boyd and Danson, 2005. 
 
Although vegetation indices, have been successfully used in 
temperate forests Zheng et al, 2004; Rahman et al, 2005), they 
have shown less potential in tropical and subtropical regions 
where biomass levels are high, the forest canopy is closed with 
multiple layering, and great diversity of species is present 
(Foody et al, 2001, 2003; Boyd et al, 1996; Lu, 2005). On the 
other hand, the spatial characteristics of images have such as 
texture have been found particularly useful in fine spatial 
resolution imagery (Franklin et al, 2001; Boyd and Danson, 
2005), and capable of identifying different aspects of forest 
stand structure, including age, density and leaf area index 
(Champion et al, 2008; Wulder et al, 1996). Indeed, texture has 
shown potential for biomass estimation with both optical 
(Franklin et al, 2001; Lu, 2005; Fuchs et al, 2009) and SAR 
data (Santos et al, 2003; Lu, 2005; Kuplich et al, 2005) 
Moreover, although most previous biomass estimation projects 

used Landsat TM data with a 30m spatial resolution (Lu, 2006), 
texture is expected to be more effective with finer spatial 
resolution imagery since finer structural details can be 
distinguished (Kuplich et al, 2005; Boyd and Danson, 2005; 
Franklin et al, 2001). This research investigates texture 
processing for biomass estimation using data from two high 
resolution optical sensors ANVIR-2 and SPOT-5 along with 
raw spectral processing and some simple band ratios. The 
overall objective of the study is to explore the potential of 
texture processing combined with multisensor capability for the 
improvement of biomass estimation using data from two high 
resolution optical sensors.  
 
The study area for this research is the Hong Kong Special 
Administrative Region (Fig. 1) which lies on the southeast coast 
of China, just south of the Tropic of Cancer. Approximately 
40% of Hong Kong is designated as Country Parks which are 
reserved for forest succession. The native sub-tropical 
evergreen broad leaf forest has been replaced by a complex 
patchwork of regenerating secondary forest in various stages of 
development, and plantations. Forest grades into woodland, 
shrubland then grassland at higher elevations.  
 
 
 
 
 
 
 
 
 

In: Wagner W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7B
Contents Author Index Keyword Index

407



 

 
 

Figure 1. Study area and location of field sampling plots 
 
 

2. METHODOLOGY 
 

The methodology (Fig. 2) of this study comprises two parts 
namely allometric model development for field biomass 
estimation, and processing of AVNIR-2 and SPOT-5 images. 
Due to the lack of an allometric model for converting the trees 
measured in the field to actual biomass, it was necessary to 
harvest, dry and measure a representative sample of trees. Since 
tree species in Hong Kong are very diverse, the harvesting of a 
large sample was required. This was done by selecting the 
dominant tree species comprising a total of 75 trees in 4 DBH 
classes (less than 10, 10-15, 15-20 and 20 & above cm) and 
standard procedures were followed for tree harvesting 
(Ketterings et al, 2001; Overman et al, 1994). 
 

 
 

Figure 2. Overall methodology of this research 
 
The harvested trees were separated into fractions including 
leaves, twigs, small branches, large branches and stem. After 
measuring the fresh weight, representative samples from every 
part of the tree were taken for dry weight measurement in an 
oven at 80°C temperature until a constant dry weight was 
obtained (Fig 3). The weight of every sample was estimated 
using the same electric weight balance at 0.002gm precision. 
The ratio of dry weight (DW) to fresh weight (FW) was 
calculated for every part of the samples using DW and FW of 
each part of the tree. Using the ratio, DW was calculated for 

every part, and finally the DW of each tree was calculated by 
summing the DW of all parts.  

 
Figure 3. Preparing the samples for dry weight measurement 

 
Regression models using DW as the dependent variable, and 
DBH and height as independent variables were tested, and the 
best fit model (Table 2) was found to be InDW = a+b*In DBH, 
with the adjusted coefficient of determination (adjusted r2 
0.932) and an RMSE of 13.50.  This was deemed highly 
satisfactory in view of the great variety of tree species, and is 
similar to the accuracies of several other specialist forest 
inventories (Brown et al, 1989; 1997; Overman et al, 1994).  
 
To build a relationship between image parameters and field 
biomass, 50 circular plots with a 15m radius covering a variety 
of tree stand types were selected using purposive sampling. The 
DBH of trees was measured at 1.3 m above ground and the 
heights of small and large trees were measured by Telescopic-5 
and DIST pro4 respectively. Using the measured parameter 
DBH, the biomass of each tree and biomass of all trees in a plot 
were estimated  
 
 

3. IMAGE PROCESSING 

The DN of the AVNIR-2 and SPOT data were converted to 
Spectral Radiance, and the images were orthorectified using the 
Satellite Orbital Math Model to obtain RMS error within 0.5 
pixel. All individual spectral bands of AVNIR-2 and SPOT-5 as 
well as different combinations of band ratios and PCA were 
tested for biomass estimation.  All individual spectral bands of 
AVNIR-2 and SPOT-5 as well as different combinations of 
band ratios and PCA were tested for biomass estimation.  
Additionally, nineteen different types of texture measurements 
(Table 1) from GLCM based (Haralick, 1973) and SADH based 
(Unser, 1986) were used to generate texture parameters from 4 
spectral bands each of AVNIR-2 and SPOT data using 4 
window sizes (3x3 to 9x9). All the generated parameters were 
tested by comparison with the field biomass using stepwise and 
multiple regression models of single and dual-sensor data. 
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Gray level co-occurrence matrix (GLCM) based texture  

 

 

 
 

 

 

 

 

 

 

 
P (i, j) is the normalized co-occurrence matrix such that 
SUM (i , j=0, N-1) (P (i, j)) = 1. 
V(k) is the normalized grey level difference vectorV(k) 
= SUM (i, j=0, N-1 and |i-j | = k) P (i, j) 
Sum & difference histogram (SADH) based texture 
parameter 

 
 

 

 

 
 

 

 

 
 

  

 

 

 = pixel value of pixel ( ) in kernel,  = the number 

of pixels that is summed,   = the kernel’s center pixel 

value,  = the normalized pixel value. 

Table 1. Formulae of texture measurements used in this study 
 
 

4. RESULTS AND ANALYSIS 

The field biomass data from the 50 field plots ranged from 
52t/ha to 530t/ha. In all modeling processes, the 50 field plots 
were used as the dependent variable and parameters (AVNIR-2 
and/or SPOT-5) derived from different processing steps were 
used as independent variables.  
 
The best estimates of biomass using simple spectral bands of 
AVNIR-2 and SPOT-5 as well as different combinations of 
band ratios and PCA produced only ca. 60% useable accuracy 
due to (i) the complexity of forest structure and terrain in the 
study areas, (ii) The very high field biomass in this study area 
(52t/ha to 530t/ha), and (iii) strong multicollinearity effects 
among the 8 bands and band ratios from the two sensors used.  
 
A notable improvement was observed for both sensors using 
texture parameters  (Table 2).  For single band texture, the 
highest (ANVIR r2= 0.742 and SPOT-5 r2 = 0.769) and lowest 
(ANVIR r2=0.309 and SPOT-5 r2=0.326) accuracies were 
obtained from the texture parameters of NIR and Red bands 
respectively. The pattern of accuracy was similar to that 
obtained using raw spectral bands although the performance 
was much higher for texture measurement.  Moreover, as with 
raw data, the second highest accuracies (ANVIR r2=0.547 and 
SPOT-5 r2=0.615) were also obtained from green and SWIR 
bands using AVNIR-2 and SPOT-5 data respectively. These 
patterns of improvement were consistent for both sensors and 
very much in agreement with the general behavior of interaction 
between different wavelengths and vegetation. Thus we found 
that texture measurement enhanced biomass estimation across 
all bands but greater improvement was observed from the bands 
where reflectance from vegetation is higher.  
 
However, unlike raw spectral bands and simple ratios of raw 
spectral bands, texture parameters from all bands together 
(either all bands of AVNIR-2 or SPOT-5) were found to be very 
useful, and obtained accuracies of 0.786 (r2 for AVNIR-2) 
(model 1 in Table 2) and 0.854 (r2 for SPOT-5) (model 2 in 
Table 2) Apart from the improved accuracies the developed 
models (using all texture parameters of an individual sensor 
together) were significant and no multicollinearity effects were 
evident. 
 
When texture parameters from both sensors were combined 
together in the model (model 3 in Table 2), as well as all texture 
parameters of PCA of both sensors together (model 4 in Table 
2), and all texture parameters from averaging of both sensors 
together (model 5 in Table 2), very significant improvements 
were obtained although PCA was not found to be very effective. 
The highest (r2=0.91) and the second highest (r2=0.90) 
accuracies were obtained from the texture parameters from the 
averaging of both sensors, and texture parameters of both 
sensors in the model respectively. These differences were 
attributed to the fact that averaging is a type of data fusion, and 
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the synergy between the two sensors probably contributed 
complementary information in the model. 
 

Model R2 RMS 
error 

1. Texture parameters of AVNIR-2  all  
bands  

     ME_AB4_5, Ku_AB2_9, CO_AB4_9,  
TEN_AB3_9, Sk_AB2_5, Ske_AB1_9 

0.79 46.5 

2. Texture parameters of SPOT-5 all bands  
     Sk_SB3_9, ASM_SB1_9, HO_SB4_9, 

ID_SB3_5, ID_SB2_3, GASM_SB4_5 

0.85 38.5 

3. Texture parameters of both sensors 
combined  
ASM_SB1_9, ASM_AB4_9, 
HO_AB4_7, Sk_SB3_7, Var_SB3_9, 
GEN_SB4_7, MDM_AB3_5 

0.90 32.4 

4. Texture parameters from PCA both  
sensors  
ASM_BPC1_9, CO_BPC3_9, 
Sk_BPC1_7, Var_BPC2_9, 
Var_BPC1_9, Std_BPC1_5, 
MED_BPC3_3/4_3 

0.85 38.8 

5. Texture parameters from Average of both 
sensors 
 Ku_A4+S4_7, ASM_A2+S1_9, 
Ku_A2+S1_5, Sk_A4+S3_7, 
Var_A4+S3_9, ASM_A4+S3_9, 
HO_A3+S2_3 

0.91 30.1 

6. Texture parameter ratio of AVNIR-2  
GEN_AT1/4_9, ASM_AT2/3_7, 
GEN_AT2/3_7, DI_AT2/3_9, 
Std_AT2/4_5, TME_AT2/4_9, 
ME_AT3/4_9, Ku_ST2/3_5 

0.90 32.0 

7. Texture parameter ratio of SPOT-5 
 Sk_ST3/4_9, DI_ST2/4_7, 
Var_ST3/4_9, ASM_ST1/2_5, 
MDM_ST3/4_7, CO_ST2/4_9, 
GEN_ST3/4_9 

0.92 29.1 

8. Texture parameter ratio of both sensors  
DI_ST2/4_7, Sk_ST3/4_9, 
Var_ST3/4_9, ASM_ST1/2_5, 
MDM_ST3/4_7, 
CO_ST2/4_9,GEN_ST3/4_9, 
MDM_aT2/3_5 CO_AT2/3_7 

0.94 24.8 

Table 2.  Results of biomass estimation.  For models (ME, Ku, 
CO etc, see Table 1. AB4_5 means AVNIR Band 4 with kernel 

5*5, and SB3_7 means SPOT Band 3 with 7*7 kernel. 
 
Finally, the ratio of texture parameters was found to be more 
effective for biomass estimation compared to the highest 
accuracies obtained from all previous steps. The accuracies 
obtained using all ratios of texture parameters of AVNIR-2 
(r2=0.899) (model 6 in Table 2), SPOT-5 (r2=0.916) (model 7 in 
Table 2) and the texture ratios of both sensors together 
(r2=0.939) (model 8 in Table 2) were considerably higher than 
for the simple texture models. Similar to the texture models, no 
multicollinearity effects were evident.   
 
This great improvement in biomass estimation observed in this 
study can be explained by the fact that we used three image 
processing techniques together as follows; 
(i)  texture processing which had already shown potential for 

biomass estimation in many previous studies using 
optical (Fuchs et al, 2009; Lu, 2005) and SAR data 
(Santos et al, 2003; Kuplich et al, 2005).  

(ii)  datasets from two different sensors were used in this 
processing. Although both datasets used are from optical 
sensors (AVNIR-2 and SPOT-5), there are differences in 
the wavebands, therefore it was anticipated that at least 
some complementary information could be obtained.  

(iii)  finally we tested the ratio of texture parameters. We know 
from previous research that ratios, whether simple or 
complex, and whether between different bands, different 
polarizations, or different frequencies, can improve 
biomass estimation by minimizing features which are 
similar in both bands such as topographic and forest 
structural effects.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Relationship between field and model biomass 
 
 

5. CONCLUSION 
 
Data from two high resolution optical sensors were used in this 
research to establish a relationship between field biomass and 
remotely sensed observation parameters. The processing of data 
was conducted for each sensor individually and both sensors 
together. Spectral reflectance, texture parameters and ratio of 
texture parameters were evaluated for the improvement of 
biomass estimation. The results are promising, and except for 

the simple spectral reflectance, the accuracy (r2) of biomass 
varied estimation was higher than 80%, though this varied 
between the two sensors due to different band availability. The 
accuracy of SPOT-5 sensor was somewhat higher in all 
processing steps compared to AVNIR-2 except for the simple 
spectral reflectance because of the availability of SPOT’s SWIR 
band. However, better results were obtained using data from 
both sensors because of the complementary information. 
 

In this research we obtained accuracy (r2) ranging from 0.79 to 
0.94 using different processing steps, and the highest accuracy 

(r2=0.94) was obtained using the texture parameter ratio of both 
sensors. This accuracy is very promising, and this achievement 
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can be explained by our step wise processing which included 
the advantages of texture, ratio and complementary information 
from different sensors. In addition to the remote sensing data 
processing, the comprehensive and study area-specific nature of 
the field biomass data, and demonstrated accuracy of the 

allometric model (i.e. r2 of 0.93) devised for this study from the 
destructive sampling of 75 trees was instrumental in obtaining 
this high accuracy. This research used numerous processing 
steps and data combinations, but in other field conditions a 
similar approach can be adopted to identify the most suitable 
steps for that particular situation.   
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