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ABSTRACT: 
 

This study investigates how to derive water fraction and flood map from the Moderate-Resolution Imaging Spectroradiometer 
(MODIS) onboard the Earth Observing System (EOS) using a Regression Tree (RT) approach. The RT approach can integrate all 
the possible candidate predictors, such as the MODIS channel 2 reflectance (CH2), reflectance ratio (CH2/CH1), reflectance 
difference (CH2-CH1) between MODIS channels 2 and 1, vegetation and water indices. Meanwhile, it provides accuracy estimates 
of the derivation. The recent floods in New Orleans area in August 2005 were selected for the study. MODIS surface reflectance 
with the matched surface water fraction data were used for the RT training. From the training set, 60% were used for training, and 
the remaining 40% for test. Rules and regression models from the RT training were applied for real applications to New Orleans 
flooding in 2005 to calculate water fraction values. Flood distributions in both space and time domains were generated using the 
differences in water fraction values after and before the flooding. The derived water fraction maps were evaluated using higher 
resolution Thematic Mapper (TM) data from the Landsat observations. It shows that correlation between the water fractions derived 
from the MODIS and TM data  is 0.97, with difference or “bias” of 2.16%, standard deviation of 3.89%, and root mean square error 
(rmse) of 4.45%. The results show that the RT approach in dynamic monitoring of floods is promising.   
 
 

1. INTRODUCTION 

Satellite-derived flood maps in near-real time are vital to stake 
holders and policy makers for disaster monitoring and relief 
efforts. Precise mapping of floods and standing water is also 
required for detecting deficiencies in existing flood control and 
for damage claims.  

Satellite sensors used in river and flood studies may be 
classified into two types: (1) passive, in which the sensor 
receives energy naturally reflected by or/and emitted from the 
earth's surface; and (2) active, in which the sensor provides 
illumination and records the amount of incident energy returned 
from the sensed surface (Smith, 1997). Sample passive sensors 
in visible and infrared spectrums are the Thematic Mapper 
(TM) and Multi-Spectral Scanner (MSS) onboard the Landsat 
satellites, the Advanced Very High Resolution Radiometer 
(AVHRR) onboard NOAA polar-orbiting meteorological 
satellites, Visible High Resolution (HRV) sensor onboard the 
Satellite Pour l'Observation de la Terre (SPOT), the Advanced 
Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER) and the Moderate-Resolution Imaging 
Spectroradiometer (MODIS) onboard the Earth Observation 
System (EOS) satellites. Passive microwave radiometers, such 
as the Special Sensor Microwave/Imager (SSM/I) on board the 
defense meteorological satellites, can transpire clouds and 
measure the microwave energy naturally emitted from the 
Earth's surface. The coarse spatial resolution of these 
microwave sensors (ca. 27 km at 37 GHz) has been mitigated 
through the combined use with the visible and infrared sensors 
for the flood detection (Hallberg et al., 1973; Sipple et al., 
1992; Toyra et al., 2001; 2002). 

Much of the pioneering work on the remote sensing of floods 
was accomplished using the MSS sensor on the First Earth 
Resources Technology Satellite, later renamed Landsat-1. 

With a spatial resolution of about 80 m, MSS data was 
used to mapping the extent of flooding in Iowa (Hallberg et al., 
1973; Rango and Salomonson, 1974), Arizona (Morrison and 
Cooley, 1973), Virginia (Rango and Salomonson, 1974) and 
along the Mississippi River (Deutsch et al., 1973; Deutsch, and 
Ruggles, 1974; Rango and Anderson, 1974; McGinnis and 
Rango, 1975; Deutsch, 1976; Morrison and White, 1976) . All 
of these studies show that MSS band 7 (0.8-1.1 μm) was the 
most useful for separating water from dry soil or vegetated 
surfaces due to the strong absorption of water in the near-
infrared range. This feature was further confirmed by analyzing 
MSS band 5 (0.6-0.7 μm), band 7 and field spectral radiometer 
data along shoreline water-wet soil-dry soil transitions by Gupta 
and Banerji (Gupta and Banerji 1985). Flooded areas were 
delineated based on the sharp contrast between water spread 
and adjacent areas. The standing water areas appeared as dark 
blue to light blue depending upon the depth of water, while the 
receded water and wet areas appeared as dark to light gray. 

Other studies have continued the methodology developed 
with the MSS, using Landsat TM and SPOT data (France and 
Hedges, 1986; Jensen et al., 1986; Watson, 1991; Blasco et al., 
1992; Pope et al., 1992; da Silva, 1992). The coarser spatial 
resolution (ca. 1 km) sensors, such as the AVHRR, have been 
successfully used for studying large river floods (Ali et al., 
1989; Gale and Bainbridge, 1990; Rasid and Pramanik, 1993).  

Sheng et al. (2001) summarized the spectral characteristics 
of the main features (i.e. water, vegetation, soil, and clouds) 
during floods at the observation scale of NOAA satellites. 
Although AVHRR data can be displayed in 3-channel color 
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composites for visual analysis (flood and standing water 
absorbs infrared wavelengths of energy and appears as 
blue/black in the RGB composite imagery), water body 
identification in AVHRR imagery evolved from qualitative 
visual interpretation to automatic quantitative extraction. The 
reflectance of AVHRR channel 2 (0.73-1.1μm, similar to MSS 
band 7), the reflectance difference (CH2-CH1) and ratio 
(CH2/CH1) between channel 2 and 1 (0.58-0.68 μm, similar to 
MSS band 5) are used to discriminate water from land if these 
parameters are less than the threshold values. 
Domenikiotis et al. (2003) tried to use surface temperature to 
discriminate water from land surfaces.  However, the 
temperature model may not work well with the flood caused by 
heavy rainfall during rainy seasons in the summer when there is 
relatively low or no temperature difference between land and 
water. Domenikiotis et al. (2003) also used Normalized 
Difference Vegetation Index (NDVI) to identify water from 
land considering that water covered surfaces usually have very 
small or even negative NDVI values. It can be seen from its 
mathematical definition that the NDVI of an area containing a 
dense vegetation canopy will tend to have positive values (say 
0.3 to 0.8), while standing water (e.g., oceans, seas, lakes and 
rivers), which have a rather low reflectance in both visible 
(VIS: from 0.4 to 0.7 µm) and near-infrared (NIR: from 0.7 to 
1.1 µm) spectral bands, result in very low positive or even 
slightly negative NDVI values.  

Regression trees have been used with remote sensing 
observations (DeFries et al., 1997; Mchaelson, Schimel, Friedl, 
Davis and Dubayah, 1994; Prince and Steninger, 1999; Hansen 
et al., 2002, Solomatine and Xue, 2004). They provide a robust 
tool to handle nonlinear relationship within large data sets.  

As described above, in previous studies, several 
parameters, including the reflectance of near infrared (NIR) 
channel, the reflectance ratio and difference between NIR and 
visible (VIS) channels, NDVI, brightness temperature at 11 or 
12 µm, and surface temperature, might be used to identify water 
from land. Linear mixture model has been used by Sheng et al. 
(2001) to derive water fraction. However, it has not yet been 
shown which parameter or combination of several parameters is 
the most effective? 

This paper explores how to derive water fraction and flood 
map from the MODIS data using regression tree (RT) method. 
Section 2 introduces the dataset used. The physics of the 
problem and decision algorithms are described in Section 3. 
Section 4 presents the results and Section 5 gives a summary 
and discussion. 

 
2. DATA USED 

• Surface water percentage data derived from derived 
from the 1km land/water map supplied by the USGS 
Global Land Cover Characterization Project. The 
percentage water was created by simply determining 
the percentage of 1km pixels designated as water in 
each 10' region.  This data can be obtained from the 
Surface and Atmospheric Radiation Budget (SARB) 
working group, part of NASA Langley Research 
Center's Clouds and the Earth's Radiant Energy 
System (CERES) mission 

• MODIS L3 8-day composite surface reflectance 
product (MYD09A1) that is computed from the 
MODIS Level 1B land bands 1, 2, 3, 4, 5, 6, 7, which 
are centered at 0.648 µm, 0.858 µm, 0.470 µm, 0.555 
µm, 1.24 µm, 1.64 µm, and 2.13 µm, respectively. 
The product is an estimate of the surface reflectance 
for each band as it would have been measured at 

ground level after removing the atmospheric 
scattering and absorption. 
• MODIS L1B calibrated reflectance at the Top of 

Atmosphere (TOA) with 1 km resolution 
(MOD021KM). 

•  MODIS geolocation fields (MOD03). 
•  MODIS cloud mask (MOD35) data. 
• TM (Thematic Mapper) data from the Landsat 

observations at 30-meter spatial resolution is 
used to evaluate water fraction derived from 
MODIS. 

 
3. METHODOLOGY 

The RT, such as the M5P, is a powerful tool for generating rule-
based models that balance the need for accurate prediction 
against the requirements of intelligibility. RT models generally 
give better results than those produced by simple techniques 
such as multivariate linear regression, while also being easier to 
understand than neural networks. Unlike neural networks, the 
RT program generates a model with rules that describe the 
relationships between the independent and dependent 
parameters in the data set. Instead of simple regression analysis 
techniques, RT uses a piecewise regression technique. The 
piecewise regression analysis (classifying the data into different 
subsets) will yield different regression fits for different 
meteorological conditions, unlike a simple regression analysis. 
The RT program constructs an unconventional type of tree 
structure, with the leaves containing linear models instead of 
discrete classes by DT.  A decision tree would categorize the 
predictions into discrete classes, but the regression tree predicts 
actual continuous values.  

Since RT integrates DT with traditional regression 
analysis.  Like DT algorithm, RT algorithm can integrate all the 
possible candidate predictors, such as the MODIS channel 2 
reflectance (CH2) and channel 1 reflectance CH1, the 
reflectance ratio (CH2/CH1) and difference (CH2-CH1) 
between MODIS channel 2 and channel 1, NDVI, Normalized 
Water Difference Index (NDWI), etc., meanwhile it can 
determine continuous values, in this case water fraction, and 
giving accuracy estimates. The NDWI [45], a satellite-derived 
index from the Near-Infrared (NIR) and Short Wave Infrared 
(SWIR) channels, is also included as one input attribute. 
According to Gao [45], NDWI is a good indicator for 
vegetation liquid water content and is less sensitive to 
atmospheric scattering effects than NDVI. The MODIS 8-day 
composite data at 500-m resolution is aggregated to the same 
1/6 degree resolution of the surface water percentage map.   

In this study, the M5P (Wang and Witten, 1997), a 
reconstruction of Quinlan's M5 algorithm (Quinlan, 1992) for 
inducing trees of regression models, is used to derive water 
fraction from MODIS observations.  The M5P combines a 
conventional decision tree with the possibility of linear 
regression functions at the nodes. Techniques devised by 
Breiman et al. (1984) for their CART (Classification and 
Regression Trees) system are adapted in order to deal with 
enumerated attributes and missing values. Uses features from 
the well-known CART system and reimplements Quinlan‟s 
well-known M5 algorithm with modifications and seems to 
outperform it. M5P can deal effectively with enumerated 
attributes and missing values.  
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4. RESULTS 

4.1 Results from the RT training 

Training set is critical to RT.  MODIS 8-day composite surface 
reflectance and Surface water percentage data derived from 
derived from the 1km USGS land/water map, as shown in 
Figure 1, are used as the training datasets.   

Figure 2 shows an example of the output regression tree 
structure with the M5P algorithm. The tree employs a case's 
attribute values to map it to a leaf designating one of the 
regression models (Figure 3). The first number in brackets 
following each leaf is the number of training instances falling 
into this leaf and the second number is the root mean squared 
error of the linear model on these training examples divided by 
the global absolute deviation.  

 

 
Figure 1.  Water percentage map derived from the 1km USGS 

land/water map.  
 

Regression models generated from the M5P regression tree 
algorithm are shown in the following:  

Figure 2. An example of regression tree structure derived from 
the M5P algorithm. 

 
LM1: WF = -162.6945*CH1 - 0.583*CH2 - 320.8135*(CH2-
CH1) + 0.3253*CH2/CH1 + 39.981*NDWI + 39.7147 
LM2: WF = -0.0152*CH1 - 0.583*CH2 - 11.6055*(CH2-CH1) 
+ 0.1568*CH2/CH1 + 0.9568*NDWI + 3.9752 
LM3: WF = -0.0152*CH1 - 0.336*CH2 - 71.4079*(CH2-CH1) 
- 0.7859*CH2/CH1 + 19.7358*NDWI + 8.5573 
LM4: WF = 0.2117*CH1 - 9.0327*CH2 - 0.9369*(CH2-CH1) - 
33.0853*CH2/CH1 - 7.0218*NDWI + 43.6346 

LM5: WF = -2.223*CH1 + 0.5925*CH2 - 5.2925*(CH2-CH1) 
+ 0.0591*CH2/CH1 + 0.4396*NDWI + 2.2389 
LM6: WF = -4.0638*CH1 + 0.5925*CH2 - 8.7526*(CH2-CH1) 
+ 0.0591*CH2/CH1 + 20.3801*DWI - 0.7155 
LM7: WF = -1.7928*CH1 + 0.9452*CH2 - 4.5942*(CH2-CH1) 
+ 0.0591*CH2/CH1 + 0.2035*NDWI + 1.2859 
LM8: WF = -0.0818*CH1 - 0.0378 *CH2 - 1.0327*(CH2-CH1) 
+ 0.0524*CH2/CH1 - 1.7571*NDWI + 1.0939 
LM9: WF = -0.6528*CH1 + 0.0744*CH2 - 1.2964*(CH2-CH1) 
- 0.0338*CH2/CH1 + 0.064*NDWI + 0.4347 
LM10: WF = -0.2448*CH1 - 4.3881*CH2 - 0.9276*(CH2-
CH1) - 0.5367*CH2/CH1 + 0.009*NDWI + 2.8895 
 
Each regression model consists of:  

• A linear model (LM) number -- this serves to identify 
the regression model. 

• Every enumerated model is composed of a regression 
equation. 

Figure 2 just shows an example of the output regression 
tree structure. The actual tree structure is too complicated to be 
shown in a figure.  

 
4.2 Results from the tests with real applications   
 
Since we wish to get the geolocation information, instead of 
using surface reflectance data (MOD09), we chose to use the 
MODIS L1B calibrated TOA reflectance data (MOD021KM) in 
conjunction with the MODIS geolocation fields (MOD03). An 
accurate cloud filter for the Imager data is critical for reliable 
results. Since our method uses satellite visible and infrared 
observations, the water detection will be limited to clear 
conditions.  MODIS cloud mask (MOD35) data is used to filter 
the cloudy conditions. The rules and threshold values obtained 
from the training with surface reflectance data are applied to 
“re-predict” the New Orleans flooding at the end of August in 
2005 due to the landfall of Hurricane Katrina, which caused 
over 1500 deaths and total damage costs exceeding $50 billion.  
Figure 3 shows the water fraction map on these three days, 
calculated by using the CH2 reflectance and (CH2-CH1) 
predictors.  From these images, we can clearly detect flooded 
areas by comparing water fraction maps after flooding with 
those before flooding.  Figure 4 presents the flood maps on 
August 31 and 30 as the difference in water fraction values after 
flooding with those before flooding on August 27.  The flooded 
regions are identified in red, the original water bodies are 
shown in blue, while clouds are marked in grey.  We can see 
clearly that New Orleans and its surrounded areas were 
inundated on August 30 and 31, 2005 after Hurricane Katrina 
made landfall on August 29, 2005. 

 
4.3 Evaluations 
 
Since there are no direct ground measurements of water fraction 
as the truth data, quantitative evaluations of water fraction 
derived from satellite observations are challenging. The use of 
higher resolution satellite data is a feasible way to solve this 
problem. In this study, TM data with 30-m spatial resolution are 
used to evaluate water fraction estimates from MODIS 
observations. 

The Landsat TM pixels can be assumed to be a pure pixel 
composed of land or water. Using a decision tree method to 
perform classification to TM data, the fraction of water in a 
MODIS grid (1 km×1 km) can be calculated.  The water 
fractions at the MODIS resolution aggregated from the TM 
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observations are then used to evaluate water fractions derived 
from MODIS observations.  The scatter plot is shown in Figure 
5, the evaluation results show correlation between MODIS and 
TM water fractions is 0.966 with bias of 2.16%, standard 
deviation of 3.89%, and rms of 4.45%, for total sample number 
of 50423.    

 
Figure 3.  Water fraction map on August 31 (a), 30 (b), and 27 

(c), 2008.Figure 3. Water fraction map on August 31 (a), 30 (b), 
and 27 (c), 2008. 

 
 

5. SUMMARY 

In this study, the Regression Tree technique is applied to water 
body and flood identification with the EOS MODIS data. 
MODIS data has the advantage of global coverage, and so can 
be available worldwide.  MODIS surface reflectance with the 
matched surface percent water data before flooding are used for 
training with the RT method.  MODIS surface reflectance data 
at 500m resolution are aggregated to the same 1/6 degree 
resolution as the percent water data.  When we test the rules and 
regression models obtained from the training to “predict” or 
model future flood, in order to get the geolocation information, 
we use the Level 1B swath 1km calibrated reflectances at the 
TOA with the matched geolocation fields.   
 

 

 
Figure 4. Flood map on August 31 (a) and 30 (b), 2005 shown 
as the water fraction difference after and before flooding 
(August 27). 

 
Figure 5.  Scatter plot of water fractions of MODIS and TM on 
08/27/2005 using regression-tree algorithm.  

 
The time series of water fraction maps are generated, 

monitoring area changes of inundation. The flood maps are 
derived by calculating the difference in water fraction before 
and after flooding, and show promising results. The successful 
applications of MODIS observations to water body and flood 
identification demonstrate the effectiveness of the RT approach.     
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