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ABSTRACT: 
 
This study employs Multi-Layer Perceptron (MLP) to estimate environmental impact of salt plugs using Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (ASTER). VNIR and SWIR datasets of ASTER were assessed in mapping and 
detecting Jahani, Konarsiah, and Kohe Gach salt plugs and the affected areas located at SE Shiraz, Iran. PC color composite and 
geological map of the region were used to select training areas. Three datasets including, IARR, PCA and MNF were used as input 
to the MLP.  The results of each input were compared with the ground truth and the geological map to determine the accuracy and 
therefore to select the more appropriate dataset to be input to MLP approach input. The results demonstrated a number of the 
polluted sites and the main polluted tributaries that convey the water as well as the salt plug materials into the Firouzabad River. It is 
also indicated that the MNF input (with 85% overall accuracy) can obtain a slightly more accurate estimation than the IARR (79%) 
and PCA inputs (82%). It is concluded that the result of MNF input to MLP is more applicable to effective environmental impact 
assessment and sustainable water resources management at salt plug-affected areas. 
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1. INTRODUCTION 

Salinity caused by natural processes is a major envirnomental 
hazard and can have hazardous effects on agricultural 
production, water quality, ecological health, soil erosion, flood 
risk, infrastructure and the society. The effects and damages of 
salinity are not stronger than earthquake or landslide 
(Metternicht and Zink, 2003), but it is a major threat in semi-
arid and arid regions such as Iran. The most important impact of 
salinity is salinization of fresh rivers, which affects the quality 
of water for drinking and irrigation.  
More than 150 known salt plugs (Kent, 1970) are exposed at the 
south eastern Zagros Folded Belt, southern Iran. These saline 
formations are important because: (1) they can potentially trap 
the hydrocarbons, (2) for their potential in ore deposition, and 
(3) they can provide harmful environmental impacts. Three of 
these salt plugs, namely Konarsiah, Jahani and Kohe Gach are 
exposed at the SE Shiraz, southern Firouzabad (Fig. 1). These 
salt plugs increase the salinity of groundwater, surface water 
(especially Firouzabad River), and the adjacent soils by direct 
dissolution and transport of soluble salt plug minerals, which 
directly influence the economy and ecosystem of the area.  
Information on the extent of the salt plug-affected areas is 
required for effective environmental planning and sustainable 
water resources management. Assessing the spread of salinity 
by salt plugs has traditionally been implemented by 
geochemical, hydrologic, and geophysical (Zadneek, 2008; 
Ghanbarian, 2007; Dehghan, 2008) methods requiring the 
collection of numerous samples followed by laboratory 
measurements. However, remote sensing can act as an effective 

means of detecting environmental pollution and is a useful tool 
for acquiring basic information particularly on a regional scale 
(Sabins, 1997). The task of identifying salinity largely depends 
on the peculiar way salts distribute at the soil surface and within 
the soil mantle, and on the capability of the remote sensing 
tools to identify salts (Zinck, 2001). Many remote sensing 
techniques and datasets have already been used to map salt-
affected areas (Hunt and Salisbury, 1976; Hick and Russell, 
1990; Mougenot et al., 1993; Ben-Dor et al., 2002; Metternicht 
and Zink, 2003; Farifteh et al., 2006), but there is lack of a 
publication focusing on the application of remote sensing in 
mapping and detecting the salt plug environmental impact. An 
unpublished work of Tavakkoli (2008), however, used the 
ASTER data for enhancing the lithological units of the same 
salt plugs.  
Artificial neural network (ANN) is an interconnected group of 
nodes using mathematical methods to process information. It is 
a self adaptive system, which can change its structure based on 
the internal or external information (Hu and Weng, 2009). 
Among all the techniques, artificial neural networks (ANN) 
have been widely used (Ji, 2000, Zhai et al., 2006) due to its 
advantages over statistical methods (Bischof et al., 1992) such 
as no assumption about the probabilistic models of data, robust 
in noisy environments, and the ability to learn complex patterns 
(Ji, 2000). Neural networks have been applied in the large 
number and wide variety of applications (Liu et al., 2001; 
Kavzoglu & Mather, 2003; Verbeke et al., 2004; Chormanski et 
al., 2008; Hu and Weng, 2009). The primary aim of this study 
was identifying and mapping the salt plugs as well as the salt 
plug-affected areas. The second aim is to evaluating the use of 
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different input datasets (IARR, PCA and MNF) in identifying 
the environmental impact of the salt plugs. Bands 1-9 of 
ASTER in combination with Principal Component Analysis 
(PCA), Minimum Noise Fraction (MNF) transformation and 
Multi-Layer Perceptron (MLP) were used in this study.  
 
 

2. STUDY AREA  

The study area (28° 31′ – 28° 53′ N ; 52° 16′ – 52° 33′ E) is 
situated in the Zagors fold-and-thrust belt, western the Iranian 
province of Fars, southeastern Shiraz, and  about 25Km south 
west of Firouzabad (Fig. 1). The Zagros mountain range is 
divided into three tectonic zones from the NE to the SW: the 
High Zagros, the Zagros Simply Folded Belt, and the Zagros 
Foredeep Zone (Stöcklin 1968; Falcon, 1974). The study area is 
located in the Simply Folded Belt (SFB) which has particularly 
been studied owing to the salt plugs and its structure. The 
geology consists of Infracambrian diapirs (salt plugs) 
surrounded by the Cretaceous to recent formations. 
 
 

 
 

Figure 1.  Geological map of the study area, Southern 
Firouzabad, SE Shiraz, Iran 

  
 

3. METHODS 

VNIR+SWIR dataset of ASTER were used to detect and map 
salt plugs-affected areas by the MLP neural network. ASTER 
instrument measures reflected radiation in three bands between 
0.52 and 0.86 μm (VNIR) and six bands from 1.6 to 2.43 μm 
(SWIR), with 15- and 30-m resolution, respectively (Fujisada, 
1995). The ASTER Level 1B data used in this study were 
acquired on March 24, 2001. The following steps constitute the 
data processing and analysis of the ASTER bands: (1) spatial 
registration of the 30-m SWIR data to the 15-m VNIR data; (2) 
the data were geometrically corrected using 1:25000 
topographic maps; (3) Internal Average Relative Reflectance 
(IARR) calibration was then carried out on the data to 
normalizing images to a scene average spectrum. This method 
is particularly effective in areas where no ground measurements 
exist and little is known about the scene (Kruse, 1988); (4) A 
spectral reduction and data compression was performed using 
the principal components analysis; (5) To train and validate the 
use of MLP networks, training areas of each lithological unit 
were selected using knowledge of the PCA and the geological 
map. To do this, several ROIs were measured and extracted 
from ASTER image. 

3.1 Principal Components Analysis (PCA) 

Principal components analysis (Richards, 1984; Eklundh and 
Singh, 1993) has become a standard statistical approach in 
image processing for two main reasons: (1) to reduce the 
number of correlated image bands to form a small number of 
independent principal components to represent most of the 
variability carried by the multiple image bands, and (2) to 
increase the interpretability of the components as combinations 
of multiple bands (Jing and Panahi, 2006). PCA output results 
were used to create RGB color composite images to 
discriminating various lithological units and reducing the 
information included in the raw data into two or three bands 
without losing significant information (Monger, 2002). 
 
 

 
 

 
 
 
 
 
 
 
 

 
 Table 1.  PCA statistics of VNIR-SWIR ASTER bands on 

study area 
 
 
PCA statistics were accounted to selecting components with the 
highest information to be used in selecting training areas. 
Table1 shows the eigenvalues, variances and total cumulative 
variances for the nine PC image of ASTER data. The PC1 
image shows 87.99 percent of variances. The PC2 and PC3 
images show 7.66 and 3.04 percent of variance respectively. 
Therefore the first three components represent 98.7% variances 
of the image data.  On the other hand components 4-9 only 
contain 1.3% of the information. 
In order to mapping lithology and environmental impact 
assessment of the salt plugs components 1-3 were used to 
generate colour composite image and to select training areas. 
 
 
3.2 Minimum Noise Fraction (MNF) 

The MNF transformation is a linear transformation related to 
principal components that orders the data according to signal-
to-noise-ratio (Green et al., 1988). It can be used to determine 
the inherent dimensionality of the data, to segregate noise in the 
data, and to reduce the computational requirements for 
subsequent processing (Green et al., 1988; Boardman and 
Kruse, 1994). The MNF was applied to the ASTER to enhance 
lithological units and salt plugs-affected areas. 
 
 
3.3 Multi-layer perceptron (MLP) 

The multilayer perceptron (Rumelhart, and MacClelland, 1986) 
is by far the most well known and most popular neural network 
among all the existing neural network paradigms. (Hu and Neng 
Hwang, 2002; Carvalho, 2001). It is a mathematical approach 
(Hu and Weng, 2009), with some advantages and disadvantages 
as compared with other existing neural networks. For example, 
nonparametric statistical methods may be more useful for 

Component Eigenvalue Variance (%) Total (%) 
PC1 0.2735 87.989 87.99 
PC2 0.0238 7.661 95.65 
PC3 0.0094 3.044 98.70 
PC4 0.0016 0.520 99.22 
PC5 0.0012 0.388 99.60 
PC6 0.0005 0.173 99.78 
PC7 0.0003 0.108 99.89 
PC8 0.0001 0.060 99.95 
PC9 0.0001 0.052 100.00 
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describing the relationship between remotely sensed imagery 
and environmental variables since these tests make no a priori 
assumptions about the data. An artificial neural network (ANN) 
offers a powerful method for analyzing complex relationships 
among variables without making assumptions about the data. 
ANNs are capable of handling non-normality, nonlinearity and 
collinearity in a system (Haykin, 1994). There are many 
examples of successful MLP applications (Heermann, and 
Khazenie, 1992; Kanellopoulos, and Wilkinson, 1997; Verbeke, 
et al., 2004; Roosta et al., 2007; Hu and Weng, 2009). 
However, it is widely recognized that MLPs are sensitive to 
many operational factors including the size and quality of the 
training dataset, network architecture, training parameters, and 
over-fitting problems. (Yuan et al., 2009; Kavzoglu and 
Mather, 2003). The parameters have to be set up properly to 
find the global minimum of error function instead of a local 
minimum (Hu and Weng, 2009). 
A MLP neural network model used in the back-propagation 
(BP) learning algorithm has a nonlinear activation function 
(sigmoid function) contains several neurons (nodes), each 
having several inputs. These neurons are organized in layers, 
labeled as the hidden layer 1, hidden layer 2, and the output 
layer. Specifically to image classification, the input layer 
represents the original image, and each input layer node 
represents one image band. The hidden layer is used for image 
classification and passing the results to the output layer. The 
output layer outputs classified images (Hu and Weng, 2009). 
The name hidden layer refers to the fact that the output of these 
neurons will be fed into upper layer neurons and, therefore, is 
hidden from the user who only observes the output of neurons 
at the output layer (Yu and Neng Hwang, 2002). Figure 2 
illustrates a configuration of MLP. 
 
 

 
 

Figure 2.  The structure of three-layer MLP neural network  
 
 
The MLP approach consists of the following steps: (1) entering 
ASTER dataset as input (9 bands); (2) entering the training 
sites; (3) entering the number of training and testing sample 
pixels per category (The training pixels will be used in the 
analysis and will be a subset of the total pixels found in the 
training site). The testing pixels will be used to validate the 
results. The number of training samples will affect the accuracy 
of the training result. Too few samples may not represent the 
population for each category, while too many samples may 
cause samples to overlap, leading to a possible over training of 
the network. Additionally, too much iteration can also cause 
over training; (4) specifying the network topology (the number 
of hidden layers, the number of the input layer nodes, the 
number of the output layer nodes). The number of the hidden 
layer nodes is estimated by the following equation: 

)oih NNINT(N +=      (1) 

 
Where Nh , Ni and No are the number of the hidden, input and 
output layer nodes respectively; (5) specifying the number of 
training parameters (the learning rate- the momentum factor- 
the stopping criteria- the number of iterations- set an accuracy 
rate); (6) training the network which is required to be 
implemented before classifying the image. Training a neural 
network is a key step in classification processes, the forward 
and backward passes continue until the network has "learned" 
the characteristics of all the classes and the neural network 
modified its internal representation by changing the values of 
its weights to improve the mapping of input to output 
relationships (Ziaii et al., 2009).  During training, each sample 
(for example, a feature vector associated with a single pixel) is 
fed into the input layer and the receiving node sums the 
weighted signals from all nodes to which it is connected in the 
preceding layer. Formally, the input that a single node receives 
is weighted according to: 

 ∑
=

=
m

1i
iijj ownet                   (2)  

Where wij represents the weight between node i and j, and oi is 
output from node i. The output from given node j is then 
computed from: 
 

)f(neto jj =       (3) 

The function  f  is usually a non-linear sigmoidal function that is 
applied to the weighted sum of inputs before the signal passes 
to the next layer.  
Once the forward pass is finished, the activities of the output 
nodes are compared with their expected activities. Each node in 
the output layer is associated with a class. When a pattern is 
presented to the network, each output node will generate a 
value that indicates the similarity between the input pattern and 
the corresponding class. Except in very unusual circumstances, 
the actual output will differ from the desired outcome; the 
difference is associated with error in the network. This error is 
then propagated backward with weights for relevant 
connections corrected via a relation known as the delta rule: 
 

ij(t)iij1)ij(t αΔwoηδΔw +=+    (4) 

 
Where η is the learning rate, ߙ is the momentum factor, and ߜ is 
the computed error. The forward and backward passes continue 
until the network has "learned" the characteristics of all the 
classes. The purpose of training the network is to get the proper 
weights both for the connection between the input and hidden 
layer, and between the hidden and the output layer for the 
classification of the unknown pixels. The input pattern is 
classified into the class that is associated with the node with the 
highest activation level; (7) classifying image (hard 
classification image), and (8) accuracy assessment. 
IARR, PCA and MNF datasets of ASTER were used as a first 
layer (the input layer) that is composed of nine neurons. Based 
on PC1,PC2 and PC3 color composite and exiting geological 
map, 7 training sites including salt plug ( salt, gypsum, 
anhydrite), Bg (limestone, marl), Pd-Gu (shale, marl), As 
(limestone), Mn (marl, limestone), Bk (conglomerate) and 
Farmland were selected for defining the categories that should 
be classified. 100 pixels were used as training pixels and 100 
pixels as testing pixels for validating the results. By using 
equation (1), 8 neurons were calculated to use in the hidden 
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layer and the 7 output layer nodes were defined based on the 
number of training site categories. For balance between training 
time and overall error reduction, learning rates between 0.01 - 
0.2 were used, and to reduce the oscillatory problems, 
momentum factor between 0.5 and 0.6 were applied. To 
terminate the training process, the accuracy rate was set to 90% 
and 10000 iteration were chosen.  
The more appropriate network parameters considered in this 
study were shown in table 2. For comparing the MLP results of 
IARR, PCA and MNF inputs this structure was used separately 
for each input. Three Hard classification images based on 
different input were produced by MLP approach to showing the 
lithological units and distribution of salt plug-affected areas 
(Fig 3). 
 
 

Parameter Value 
Hidden layers 8 
Learning rate 0.10 

Momentum factor 0.5 
Sigmoid constant a 1.0 

Accurate rate % 90% 
 

Table 2. The more appropriate network parameters that were 
used in this study. 

 
 

 
 

Figure 3.  MLP mapping results, (A) result of IARR input to 
MLP, (B)  result of PCA input to MLP, (C) result of MNF input 

to MLP. 
 
 

4. ACCURACY ASSESSMENT OF INPUT DATASETS 

 
To evaluate the results of MLP classification maps obtain from 
three input datasets (IARR, PCA and MNF), the accuracy of 
salt–affected areas and lithological units were assessed using 
ground reference information by determining the overall 
accuracy and Kappa coefficient. 
The accuracy results are summarized in table 3. Comparison of 
the results of different input datasets shows higher capability of 
the MNF input to detect salt-affected areas. The accuracy 
results indicated that operating MLP with MNF input has higher 
accuracy (85%) than the IARR input with 79% accuracy and 
PCA inputs with 82% accuracy, so the hard classification image 
produced by MNF input was used to assessment of the salt 
plug-affected areas. 
 

Input to MLP 
Overall 

accuracy 
Kappa 

coefficient 
IARR 79% 0.64 
PCA 82% 0.77 
MNF 85% 0.79 

 
Table 3. Accuracy assessment of hard classification maps 
 
 

5. RESULT AND DISCUSSION 

This study investigated the utility of the MLP network with 
different input (IARR, PCA and MNF) for detecting salt plug–
affected areas southeastern Shiraz, Iran. 
The ability to map salt plugs, and extent of the salt plug’s 
materials are essential to understand and minimize salt plug’s 
environmental impact and provides practical solutions to more 
advantageous water resources management. 
At first, ASTER datasets of the area were analyzed by using the 
PCA method. By this method, the ASTER data were limited to 
3 bands. Table 1 shows PCA eigen analysis of ASTER image. 
These components were used to find suitable training areas for 
the classification, as well as gathering sufficient number of 
training samples for each lithological unit with the aim of 
existing geological map. The training areas were used to 
training the MLP neural network and detecting salt plug-
affected areas. Hard classification image of MNF input to MLP 
provide the opportunity to map salt plugs and salt plug-affected 
areas, as well as to estimate extent of salt plug materials. This 
may be important to identify impacts of salt plug on the 
adjacent areas, especially on the Firouzabad River (Fig 4). 
The Jahani (central part of the scene), Konarsiah (upper part of 
the scene) and Kohe Gach (western part of the scene) were 
identified from this neural network method. The Hard 
classification image of the southern Firouzabad show Konarsiah 
salt plug in elliptical shape. This salt plug is located at the top 
of the image, surrounded by salt plug-affected areas along the 
slopes and margins of the salt plug (Fig 4). Yellow boxes in 
figure 4 indicate polluted areas surrounding the Konarsiah. The 
spatial distribution of salt plug-affected areas observed in the 
hard classification image revealed three main spatial trends. 
Relatively, high distribution of salt plug materials is seen in the 
northern, southern and western parts of the Konarsiah. It seems 
that morphology of the salt plug plays a major role on the 
shaping of the salt plug-affected areas, because it controls the 
flow of surface runoff and hence the distribution of salt plugs 
materials. The main tributaries that convey water as well as 
Konarsiah salt plug materials are shown in figure 4, drainages 
1, 2 and 3, including branches that convey the Konarsiah 
materials into the Firouzabad River. The branch 1, located at 
the northern Konarsiah salt plug, drains its materials toward the 
east, but branches 2 and 3 are situated in the eastern and 
western sides of this salt plug respectively, draining their 
materials toward the south. 
The Jahani salt plug is located at the center of the hard 
classification image (Fig 4). High distributions of salt plug 
materials occur in the eastern, western and south western parts 
of the Jahani. This image shows that the salt plug materials are 
extending down to the Firouzabad River. The amounts of 
materials decrease from the salt plug to the Firouzabad River. 
The results show a good differentiation between salt plugs 
materials and other lithological units however, some 
misclassifications occur in south east Jahani salt plug due to the 
spectral similarities. The main tributaries that convey the water 
as well as the Jahani salt plug materials are shown in figure 4. 
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Drainages 4, 5, and 6, located at the western side, drain the salt 
materials toward the west. 
The distribution patterns of salt plug materials show a similarity 
to the spatial pattern of the Firouzabad river tributaries (Fig 4). 
The most important part of Firouzabad River that was polluted 
directly by the salt plug is situated at the northern part of the 
Jahani. This contact was clearly detected by the image 
processing (Fig 4). 
 
 

 
 

Figure 4.  MLP mapping result, GIS layer of Firouzabad River 
and its tributaries are overlaid the image. Yellow boxes indicate 
the locations of polluted areas surroundings the Konarsiah, 
Jahani and kohe Gach. The labels”1, 2, 3, 4, 5, 6, and 7 
illustrate the main polluted drainages. 
 
 
Kohe Gach is a small salt plug and is located at the western part 
of the scene. The materials of this salt plug are identified as 
having the same composition as the Konarsiah and Jahani (Fig 
4). Relatively high distribution of salt plug materials is seen in 
the eastern part of the Kohe Gach. This salt plug is another 
potential source of pollution, although the affected areas are 
relatively low. The main tributary that is polluted by this salt 
plug is branch number 7 (southern the salt plug), draining salt 
materials toward the east (Fig 4). 
 
 

6. CONCLUSION 

Results of MLP neural network at the south Firouzabad plain, 
SE Shiraz, demonstrated a number of the polluted sites and the 
main polluted tributaries that convey water as well as salt plug 
materials into the Firouzabad River. It is evident from the 
results that as water flows over and through the salt plugs, it 
picks up and carries contaminants towards the outlet of the 
basin. Surface water also carries pollutants into the underground 
water. Soil and the Firouzabad River, nearby the salt plugs, are 
polluted due to the erosion of these salt plugs. Therefore, it is 
necessary to plan to reduce their impacts on the water quality. 
Four affected areas around the Konarsiah salt plug, four 
affected areas surrounding the Jahani and one affected area 
adjacent to the Kohe Gach were identified and mapped using 
MLP approach. 

Comparison of using different input to MLP approach showed 
that MNF input provides more accurate result than the IARR 
and PCA inputs. Results also demonstrated the viability of 
VNIR+SWIR dataset of ASTER in combination to the MLP 
approach for mapping the salt plugs and identifying their 
environmental impacts. 
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