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ABSTRACT: 
 
In today airborne laser scanning (ALS) extended areas are surveyed with a high point density and with decimetre elevation accuracy 
in a very short time. However, due to the finite sampling process the correct modelling of the surveyed earth surface is difficult, if 
break lines and special topographic features like railway tracks and highways are to be modelled. To improve the ALS derived 
models more and more additional surveying data are used which are measured by e.g. GNSS or tacheometers. These measurements 
have higher accuracy and are sampled in a way that they describe best the features to be modelled. For example break lines are 
described by splines derived from a tacheometric survey. As these supplement data are provided from independent sensors in their 
own coordinate system, all data sets to be fused have to be transformed so that the most accurate model can be computed. This 
means the algorithms must regard data property of the different data sets. In addition the most accurate and precise data set has to be 
used as reference. In this paper algorithms for the fusion of ALS data and additional surveying data obtained from tacheometric and 
DGNSS measurements are presented and discussed based on results of empirical computations on different data sets. The additional 
surveying data consists either of single point measurements or profiles. The presented algorithms are developed under the objective 
to use primarily existing functionalities of a commercial program 
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1. INTRODUCTION 

Today airborne laser scanning (ALS) makes possible surveying 
the topography of extended areas with high point density and 
with decimetre elevation accuracy in a very short time. For 
example the ALTM Gemini of the Optech company achieves a 
swath width of 1865 m flying at an altitude of 2000 m and 
sampling data with a point density of about 1.5 m realizing the 
mentioned accuracy. Although this advanced technology 
revolutionized the surveying with regard to the amount of data 
and elevation accuracy, there is still a deficiency in precise 
modelling special topographical features, e.g. break lines, 
highways, railway tracks etc. due to the sampling process. 
However, very often these special topographical elements are 
surveyed by distinct surveying means like GNSS and 
tacheometric measurements, which reach accuracy down to 
millimetres. Therefore, it is obvious to combine these 
complementary measurements for an advanced modelling. In 
addition, it must be regarded that more and more the modelling 
process using ALS data is supported by using information of 
geoinformation systems (GIS). Following the trends in 
generating precise Digital Terrain Models (DTMs) out of ALS 
data makes clear that all available additional information is 
integrated into the modelling process to speed up, to improve 
the robustness of calculations and to increase the precision. 
This paper deals only with the integration of supporting 
surveying measurements obtained by conventional means e.g. 
GNSS real time kinematic and tacheometric measurements. 
These measurements exhibit in general a much lower point 
density but offer a point accuracy which is an order of 
magnitude better compared to ALS data. 
 

Working with commercial software which derives a DTM out 
off ALS point clouds one very often faces the problem that 
certain structures e.g. break lines or sharp corners etc. are not 
correctly modelled. This problem becomes very obvious, if the 
surveyed surface is modelled by a Triangulated Irregular 
Network (TIN) and the TIN is not modelled accurately to shape 
of the surface. This is especially the case if an unsupervised 
Delauney Triangulation is applied. A typical example 
concerning this case is shown in Figure 1. 
 

 
 

Figure 1.  Modelling bad in form to the surface 
 
(Wehr et al., 2009) showed that the triangulation model can be 
improved, if break line points are regarded in the triangulation 
process (s. Figure 2). In (Wehr et al., 2009) the break line is 
determined out of the point cloud data by a special algorithm. 
However, very often this additional information is already 
available for section of interest from other surveying sensors. 
Fusing data of different sensors the problem arises, that the 
independent data sets are not exactly registered. Therefore, 
supplementary processing steps are required for coregistering. 
The algorithms presented in the following are developed with 
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the objective to improve the TIN-models and to use the 
information about the order of the points of the point cloud 
available in the TIN-model. In this paper an algorithm is 
presented which covers the following tasks: 
 

a) Fusing GPS-RTK points with ALS-TIN-Model 
b) Fusing profiles with ALS-TIN-Model 
c) Fusing two models with different accuracy 

 
 

 
 

Figure 2.  Model using profile line information 
 
 

2. FUSION ALGORITHM 

In this chapter the basic algorithm is presented which is applied 
in the three tasks mentioned in the introduction. A basic 
algorithm can be defined as the three tasks have in common, 
fusing 3D surveying points of an independent sensor with ALS-
points (s. Figure 3) which corresponds directly with case a). 
 

 
 

Figure 3.  Setup fusing GPS-points and ALS-TIN-model 
 
The algorithm is funded on the moving plane algorithm of 
(Kraus, 2000) and the least square matching (LSM) based 
analysis presented in (Ressl a.l., 2008). In the following it is 
assumed that both data sets are well registered, so that only 
shifts in x, y and z direction remain. As all data are already 
modelled it is assumed furthermore that all data are available in 
a plane projection e.g. UTM-coordinates, so that the z-
component corresponds to the elevation. 
 
 

 
Figure 4. With polynomial approximated surface 

The moving plane algorithm is extended to a polynomial 
approach, because (Thiel and Wehr, 2001) showed that DTMs 
can be modelled from ALS-data by using third order 
polynomials (s. Figure 4). 
 
2.1 Fusion Process 

The procedure explained in the following was developed 
regarding Figure 3. If 

iALSr
r

is the vector to the ith ALS point and 

jGPSl
r

the vector to the jth surveyed GPS point, then look for each 

GPS point with j є {GPS points} all ALS points i є {ALS 
points} which satisfy the following condition: 

 εlr
jPiALS ≤−
rr

 (1) 

The bound ε should be larger than the expected shifts. If the 
number of identified ALS points for each GPS point satisfies 
the number of required points for a polynomial approximation 
the polynomial parameters are approximated by least square 
matching LSM. Accordingly to the empirical modelling in 
(Thiel and Wehr, 2001) and to Figure 4 seven parameters have 
to be computed so that more than 7 ALS points have to be 
identified for each GPS point. This leads to j surface patches 
each described by a polynomial: 
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S represents the elevations zj(x,y). The three dimensional shifts 
Δx, Δy and Δz between the ALS-points and the jth GPS-point 
can be described by  
 
 Δz)y,(xzΔy)yΔx,(xS jjGPSj +=++    (3)  
 
The shifts can be determined by linear LSM. The corresponding 
observation equation derived from (3) is given by 
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where Δx*, Δy* and Δz* are the initial estimates for the shifts 
and hj are the elevation residuals. The derivatives of Sj are 
 

 

2

654j

j

2

321j

j

32a
S

32a 
S

jjjj

jjjj

yaya
y

xaxa
x

⋅+⋅+=
∂
∂

⋅+⋅+=
∂
∂

 (5) 

 
The Gauss-Markov LSM formula is then  
 
 ΦAAAξ TT 1)( −⋅=  (6) 

with 
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and n the number of GPS points used for the fusion process. 
The vector ξ contains the adjustments 
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In Figure 5 the functioning of the algorithm is demonstrated. 
 
 

 
Figure 5.  Functioning of fusion algorithm 

 
 
 

3. APPLYING THE ALGORITHM FOR THE THREE 
TASKS 

The algorithm described in the preceding section is 
implemented in the software which carries out the fusing tasks 
defined in the introduction.  
 
3.1 Fusing GPS-RTK points with ALS-TIN-Model 

This case is graphically shown in Figure 3 and the algorithm 
can be used directly. The key preparing task is here to find the 
closest ALS points for each given GPS point in order to model 
the surface in the vicinity of the GPS points. Due to the 
triangulation process, which was carried out before, this 
information can be easily drawn out of the TIN model internally 
stored during the runtime. 
 
3.2 Fusing profiles with ALS-TIN-Model 

In this case profile lines are available which are surveyed either 
by RTK-GPS or tacheometric measurements. These profile 
models are composed of a number of lines. These lines are 
defined by precise measurement points which are linked 
together by straight lines. As shown in Figure 6, the points 
along the lines exhibit a much lower density than the ALS 
points. In a first step the shift parameters Δx, Δy and Δz can be 
determined only on the basis of the measured profile points. In 
order to put more weight into the profile model it is advisable to 
interpolate additional profile points along the profile lines and 
use those for fusing. Here a linear interpolation is sufficient. 
 

 
 

Figure 6.  Profiles and ALS-model 
 
3.3 Fusing two models with different accuracy and 
different horizontal resolution 

It is supposed that one model is derived from an ALS point 
cloud and the other is derived from very precise surveying 
measurements e.g. DGPS-RTK. The second model exhibits a 
much higher accuracy and describes well the shape of the 
surface. It covers only a small area of the first model (s. 
Figure 7). 
 

 
 

Figure 7.  Two models with different accuracy 
 

 
Figure 8.  DGPS-RTK model in ALS-model 

 
Figure 8 shows a typical configuration with real data. The small 
blue shaded area consists of GNSS- and ALS-data. A zoomed 
image (s. Figure 9) depicts that discontinuities are observed at 
the transition of both models, although the described fusing 
algorithm was applied. Here a sophisticated smoothing filter is 
required to realize a perfect matching. 
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Figure 9.  Discontinuities in overlapping area of both models 

 
The developed filter is based on the “Multiquadratic Method” 
explained in (Kraus, 2000). Before the filter is processed the 
user has to determine which model has the highest accuracy. As 
in general the user has a priori information about the data sets to 
be fused, this step is done best manually. The most accurate 
model is named M1, the other one M2. As shown in Figure 8, 
M1 is a subset of M2. In a follow on step a border line in the 
xy-plane between M1 and M2 is calculated (s. Figure 10) and 
for all points defined by the intersections of the border line with 
the models an elevation difference Δhi between both models can 
be computed:  
 
 

iZ(M2)iZ(M1)i PPΔh −=  (10) 
 

 
Figure 10.  Definition border line and buffer are 

 

 
Figure 11.  Interpolation setup 

 
In a next step a so called buffer area is setup about M1 in the 
xy-plane (s. Figure 10). The outer boundary of the buffer is 
displayed by a blue line in Figure 10. The elevation differences 
are set to zero on this line. This means, the elevation differences 
have their maximum (Δhi ) at the inner line of the buffer (border 

line) and zero at the outer line. This makes clear that transition 
between M1 and M2 is done within the buffer. The smoothed 
elevation difference will be some what in between. The buffer 
size has to be selected very carefully, because the number of 
points, which should be used for the calculation, is strongly 
dependent on the buffer size (s. Figure 10).  
The interpolation of the elevation differences within the buffer 
is carried out by the “Multiquadratic Method”. Looking at 
Figure 11), which shows an arbitrary point P within the buffer 
and Pi intersecting points, the distance iPP in the xy-plane 
between P and Pi is given by 
 
 2

i
2

ii )Y(Y)X(X)Pk(P, −+−=  (11), 
 
if X,Y are the coordinates of P and Xi, Yi the coordinates of Pi. 

)Pk(P, i is also called the core function. The elevation difference 
Δh for point P can be interpolated by 
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Here is mi a scale factor for distance from point P to the ith tie 
point and n is the number of tie points. In matrix notation one 
can write: 
 
 mk T ⋅=Δh  (13), 
with  

)k...,,k,k,(k n321=Tk and )m...,,m,m,(m n321=Tm . 
 
For n elevation differences Δhi a linear equation system can be 
setup with Equation (13): 
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which corresponds to 
 
 dhmK =⋅  (15) 
 
Now, the actual elevation difference for Δh (X,Y) can be easily 
computed by 
 dhKk 1T ⋅⋅=Δ −h  (16) 
 
Figure 12 proves the smoothing effect of this filter for the 
transition area between M1 and M2. Here the ALS- and GNSS-
DTMs already presented in Figure 8 are matched and smoothed 
around the GNSS-DTM. 
 

 
Figure 12.  TIN-model after smoothing 
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4. CONCLUSIONS AND IMPROVEMENTS 

The empirical test runs of the fusion algorithm show that good 
fusing results can be obtained.  However, it performs best, if the 
models exhibit high elevation dynamic. In case of a plane the 
algorithm fails, because shifts in the horizontal are arbitrary. In 
this case the vertical shift can be determined by a special 
algorithm which first models the two planes and then 
determines the vertical shift between them.  
Operational test runs on real data show that if profile lines are 
regarded in ALS data modelling an improvement in the 
determination of excavated material in e.g. open mining is in 
the order of 0.1 m³/(m² surveyed area). 
In a further development step the algorithm will be extended so 
that also the three Euler orientations between the different data 
sets are determined. 
The smoothing algorithm proves its performance. All presented 
algorithms will be implemented in a commercial program.  
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