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ABSTRACT:

In this paper, we present a weakly supervised classification method for a large polarimetric SAR (PolSAR) imagery using multi-modal
markov aspect model (MMAM). Given a training set of subimages with the corresponding semantic concepts defined by the user,
learning is based on markov aspect model which captures spatial coherence and thematic coherence. Classification experiments on
RadarSat-2 PolSAR data of Flevoland in Netherlands show that this approach improves region discrimination and produces satisfactory
results. Furthermore, multiple diverse features can be efficiently combined with multi-modal aspect model to further improve the
classification accuracy.

1 INTRODUCTION

During the last decade, several space-borne sensors with polari-
metric SAR (PolSAR) imaging have been lauched and produce
terrabytes of PolSAR images. PolSAR remote sensing offers an
efficient and reliable means of collecting information required to
extract geophysical and biophysical parameters from Earth’s sur-
face, which shows potential for improved results in many suc-
cessful applications. As it becomes increasingly viable to ac-
quire, store, order and share large amounts of polarimetric SAR
data, accurate and ease-to-use supervised classification method is
crucial to extracting information from these datasets.

Earlier supervised classification methods for polarimetric SAR
data are mainly pixel-based schemes. The widely used methods
are the maximum likelihood classification based on the complex
Wishart distribution (Lee et al., 1994) and its variations (Lee et
al., 2001) (Beaulieu and Touzi, 2004). The classification per-
formances of these methods are affected by speckle seriously
since they are unable to capture and utilize the spatial informa-
tion in the scene. To overcome this problem, region-based meth-
ods have been employed, which use a over-segmentation step (or
grid partition step) and form groups of pixels that represent ho-
mogeneous regions. In (Wu et al., 2008), wu et al. proposed
a region-based classification method for polarimetric SAR im-
ages with a Wishart Markov Random Field model, which can
efficiently use the statistical properties of the data and the spa-
tial relation of neighboring pixels. Ersahin et al. (Ersahin et al.,
2010) proposed to use spectral graph partitioning approach for
segmentation and classification of POLSAR data,and achieved
promising classification accuarcy superior to the Wishart classi-
fier. Recently, classifiers originated from machine learning and
pattern recognition domain have attracted more attention, such
as neural networks (Shimoni et al., 2009), support vector ma-
chine(SVM) (Lardeux et al., 2009), and Random Forests (Zou
et al., 2010). These methods are also usually implemented on
region level, and they can easily handle many sophistical image
features and get remarkable performance. However, existing su-
pervised classification methods most require the labor-intensive
and time-consuming works to label every pixel in the training
samples. Furthermore, as to general user, it is very difficult to

make ground truth for pixel-level labeled training samples in SAR
image, sometimes only experts of SAR image interpretation are
qualified for this job. In this work, we are interested in weakly
supervised classification of PolSAR images, which is aimed at
partitioning a PolSAR scene into their constituent semantic-level
regions with only keywords labeled training data.

In this study, we present a solution using a multi-modal markov
aspect model proposed by Verbeek and Triggs (Verbeek and Triggs,
2007), which can be learned from image-level keywords without
detailed pixel-level labeling. The whole classification process
consists of four cascaded stages. In the first stage, we partition
the whole PolSAR scene into hundreds of subimages. From each
subimage we extract overlapping patches on a grid, represent-
ing them by polarimetry, intensity and texture descriptors. We
assume that each subimage patch belongs either to one of the
label classes or to a vague background class “void”. Then, we
model each subimage as a mixture of latent aspects with a multi-
modal markov aspect model which can be learnt from image-
level keywords. Next, we use an efficient expect maximization
(EM) algorithm to learn the model and apply loopy belief prop-
agation (LBP) (Yedidia et al., 2005) inferring algorithm to label
every patch in the test subimages with the trained model. Finally,
we apply a over-segmentation based soft mapping to propagate
patch-level labeling to pixel-level classification, and group the
large PolSAR scene classification result from the labeled subim-
ages.

The rest of the paper is organized as follows. Section 2 briefly in-
troduces the three type features we used for classifying PolSAR
images. Section 3 describes the baseline classifier-Wishart maxi-
mum likelihood classifier. The multi-modal markov aspect model
is reviewed in Section 4. Section 5 gives comparative experimen-
tal results and quantitative evaluation, and section 6 concludes the
paper.

2 FEATURE DESCRIPTORS FOR POLSAR IMAGES

Classification problem is challenging because the instances in
SAR images belonging to the same class usually have very high
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intraclass variability. To overcome this problem, one strategy is to
design feature descriptors which are highly invariant to the vari-
ations present within the classes, however none of the feature de-
scriptors will have the same discriminative power for all classes.
The other widely accepted strategy is that, instead of using a sin-
gle feature type for all classes, it is better to combine multiple
diverse and complementary features based on different aspects.
Therefore, we extract multiple polarimetric and low-level image
features for describing the small patches in each PolSAR subim-
age. A more detailed description of these feature parameters is
given below:

2.1 Polarimetry

PolSAR is sensitive to the orientation and characters of target
and thus yields many new polarimetric signatures which produce
a more informative description of the scattering behavior of the
imaging area. There are many polarimetric descriptors summa-
rized in (Shimoni et al., 2009). For simplicity, we just use the nine
parameters obtained by Huynen decomposition (Huynen, 1990).

Given a scattering matrix measured in the orthogonal linear (h, v)
basis, the classical 2 × 2 Sinclair scattering matrix S can be ob-
tained through the construction of system vectors.

S =

(
SHH SHV

SV H SV V

)
(1)

The coherency matrix is constructed from a scattering vector in
the base of Pauli basis. In the monostatic backscattering case, for
a reciprocal target matrix, the reciprocity constrains the Sinclair
scattering matrix to be symmetrical, that is, SHV = SV H . Thus,
the target vectors kp can be constructed based on the Pauli basis
sets, respectively. With this vectorization we can then generate
the coherency matrix T as follows,

kp =
1√
2

[
SHH + SV V

SHH − SV V

2SHV

]
, [T ] =

⟨
kp · k∗T

p

⟩
, (2)

The Huynen decomposition (Huynen, 1990) is the first attempt to
use decomposition theorems for analyzing distributed scatters. In
the case of coherence matrix, this parametrization is

[T ] =

[
2A0 C − jD H + jG

C + jD B0 + B E + jF
H − jG E − jF B0 − B

]
(3)

The set of nine independent parameters of this parametrization
allows a physical interpretation of the target: A0, B0+B, B0−B,
C, D, E, F , G, H . The nine Huynen parameters are useful for
general target analysis without reference to any model, and each
of them contains real physical target information.

2.2 Texture

The Gray Level Co-occurrence Matrix (GLCM), Gabor filters,
Gaussian Markov random fields (GMRF) Texture are three widely
used features for SAR image texture segmentation. Former ex-
periments show that GMRF yields the best performance in terms
of classification accuracy, although it has high computational com-
plexity in high order case (Clausi, 2001). The Gaussian Markov
Random Field models characterize the statistical dependency be-
tween a pixel and its neighbors by representing the gray level in-
tensity at site s, as a linear combination of gray levels in a neigh-
borhood set N(s) around s, and Gaussian zero mean stationary
noise. The specific definition of neighbours and their influence
on other points give GMRF the freedom to model many types of

Figure 1: The first to fifth-order MRF neighborhood system

textures. GMRF model is fitted on the patches, and the model
parameters are used to form a multi-dimensional feature space.
Figure 1 illustrates the different orders of MRF, which is related
to the location of neighbors. To balance the computation com-
plexity and classification accuracy, we use a four-order GMRF,
which can be expressed as follows:

f(m, n) =
∑

(t,s)∈N

θ(t, s)f(m − t, n − s) + e(m, n) (4)

where N represents the 20 neighborhoods, and e(m, n) ∼ N(0, σ2)
with zero mean and variance σ2. For each pixel, we train the
mean µ, σ, and due to the symmetry of correlation function, only
the 10 parameters,θ(t, s), (t, s) ∈ N ,over a window W centered
on this, by Least Square Estimation (LSE). The feature space is
formed as 12 dimensions vector µ, σ, θ(t, s), (t, s) ∈ N .

2.3 Intensity

In our previous work, we learn that histogram is a simple but
informative descriptor for single polarimetric SAR imagery clas-
sification. For full polarimetric SAR images, unlike the SPAN
histogram used in (He et al., 2008), we propose to use the multi-
channel histogram which is a cumulative enumeration of its un-
derlying HH, HV and VV channels.

3 BASELINE CLASSIFIER-SUPERVISED ML
CLASSIFICATION OF [T] MATRIX DATA

According to Bayes optimal decision rule, a pixel is assigned to
the most probable class conditionally to the observation over the
pixel under consideration. If the prior probabilities are supposed
to be equal, the optimal decision rule reduce to the maximum
likelihood supervised segmentation.

It has been shown that a n-look coherence matrix follows a com-
plex Wishart distribution with n degrees of freedom, Wc(n, [

∑
]),

given by

P ([T ]) =
nqn|[T ]|n−qexp(−tr(n[Σ]−1[T ]))

K(n, q)|[Σ]|n

with K(n, q) = π
q(q−1)/2

∏q

i=1
Γ(n−i+1) (5)

where q stands for the number of elements of target vector, equal
to 3 in the monostatic case, | · | represents the determinant, tr
represents the trace of a matrix and Γ(·) denotes the Gamma
function. A pixel p can be assigned to a class {Θi, . . . , ΘM}
in maximum likelihood way, according to the following steps,

• Initialize pixel distribution over M classes from training sam-
ples;

• For each class, [Σ̂i = 1
Ni

∑
[T ] ∈ Θi], where [Σi] is the

coherence matrix of class Θi computed during the training
phase;
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• For each pixel, [T ] ∈ Θi if d([T ], Θi) < d([T ]/Θj), j =
1, . . . , M, j ̸= i

In the following experiments, we will employ the pixel-based and
patch-based wishart ML classifier as the baselines.

4 WEAKLY SUPERVISED CLASSIFIER-MARKOV
ASPECT MODEL

Recently, many research works on labeling natural images fo-
cus on the utilization of high-level semantic representation with
topic models, such as the Probabilistic Latent Semantic Analysis
(PLSA) (Hofmann, 2001) or its bayesian form, the Latent Dirich-
let Allocation (LDA) (Blei et al., 2003). They consider visual
words as generated from latent aspects (or topics) and express
image as combination of specific distributions of topics, which
can solve some cases of visual “polysemy” by capturing thematic
coherence (image-wide correlations). Verbeek and Triggs (Ver-
beek and Triggs, 2007) proposed to use markov aspect model
that captures both spatial coherence (local correlations between
labels) and thematic coherence (image-wide correlations), and
further employed a multi-modal aspect model to combine mul-
tiple cues for improving classification accuracies. Experimental
results on the Microsoft Research Cambridge data sets show their
model significantly improves the region-level classification accu-
racy. Li et al. (Li and Perona, 2005) proposed two variations of
LDA to generate the intermediate theme representation to learn
and recognize natural scene categories, and reported satisfactory
categorization performances on a large set of complex scenes.

In remote sensing domain, Liénou et al. (Liénou et al., 2010) pro-
posed to exploit the LDA model to semantically annotate panchro-
matic QuickBird images with 60-cm resolution, and demonstrated
that using simple features such as mean and standard deviation
for the LDA-image representation can lead to satisfying labeling
results. However, PLSA is computationally more efficient than
LDA and it has comparable accuracy in practice (Verbeek and
Triggs, 2007). In this work, we use multi-modal PLSA-MRF
framework (Verbeek and Triggs, 2007) for polarimetric SAR im-
age classification, which naturally introduces the spatial infor-
mation by combining Markov Random Fields with Probabilis-
tic Latent Topic Models. PLSA-MRF basically just adds pair-
wise MRF couplings to the PLSA label inference process, we use
LBP for MRF inference and EM algorithm for maximum like-
lihood estimation of the model as done in (Verbeek and Triggs,
2007). Unlike multi-modal LDA (Li and Perona, 2005), multi-
modal PLSA-MRF (i.e. multi-modal markov aspect model) as-
sumes that the different types of features are independent given
the topic.

P (w|d) =

T∑

t=1

P (whuy|t)P (whist|t)P (wgmrf |t)P (t|d) (6)

P (t|w, d) =
P (whuy|t)P (whist|t)P (wgmrf |t)P (t|d)

P (w|d)
(7)

5 RESULTS AND DISCUSSION

We validate the above-mentioned multi-modal markov aspect model
on the semantic annotation of a large scene Radarsat-2 Polari-
metric SAR image. In this Section, we present our experimental
setup, show a detailed performance evaluation illustrated with the
classification results, and we finally discuss the limits of the la-
beling algorithm.

5.1 Data Description and Experimental Setup

The experiments are performed on RadarSat-2 fully polarimetric
SAR images of Flevoland in Netherlands, with 12m ×8m reso-
lution at fine quad-pol mode. The PolSAR scene to be labeled is
of size 4000 × 2400 pixels, which mainly contains four classes:
woodland(Wo), cropland(Cr), water(Wa), building area(Bu). We
divide the PolSAR scene into 240 subimages, each subimage is
200 ×200 pixels. Fig.2 shows 8 examples of keywords labeled
training subimages, and we use 40 subimages with such key-
words annotation as the training set.

5.2 Post-processing with over-segmentation mapping

In our labeling algorithms, learning and inference take place at
the patch level, but the results are propagated to pixel level for
visualization and performance quantification. We apply a mean-
shift based over-segmentation mapping to map the patch-level
labelings to pixel-level classification. It combines the nearest
mapping result (we compute the class label at the pixel level as
the nearest patch label) with a low level over-segmentation since
segment boundaries can be expected to coincide with the image
edges, which can reduce the block effect of the nearest mapping
and also can improve the accuracy slightly. Here we compute the
over-segmentation with the Edge Detection and Image Segmen-
tation (EDISON) System of Mean Shift (Comaniciu and Meer,
2002) implementation. The parameters of the segmentation are
chosen to mostly over-segment the subimages.

5.3 Classification results and quantitative evaluation

For quantitative evaluation of the classification accuracy with dif-
ferent features and classifiers, we select a region from the original
test site of size 1400 × 1200 with corresponding elaborately la-
beled ground truth. Pixels are assigned to four semantic classes
or void. The four classes are building area, woodland, water and
cropland. The void pixels either do not belong to one of the four
classes or lie near boundaries between classes and were labeled
as void to simplify the task of manual segmentation. About 6%
of the pixels are unlabeled (“void) in the evaluation data. Table 1
gives the performance of different classifiers and features. We can
find that multi-modal markov aspect model using image-level la-
beled training data outperforms traditional Wishart ML methods
with detailed pixel-level labeled training data by %3.8. In fact,
even when using only one feature-GMRF or Hist, they provide
pixel-level classification accuracies outperform those of Wishart
ML classifier trained using detailed pixel-level labelings by 0.5%
or 2.1%, respectively. The classification results of the original
test site (4000 × 2400) using multi-modal markov aspect model
and Wishart ML (pixel-based and patch based) are presented in
Fig.4.

Est. \ True Wo Wa Bu Cr ave.acc.
ML-pixel 86.2 90.5 34.1 76.3 71.3
ML-patch 91.5 73.8 44.3 78.1 72.8

MMAM-Huy 75.1 70.0 80.0 57.6 69.4
MMAM-GMRF 89.3 64.3 86.6 52.4 71.8

MMAM-Hist 78.1 81.3 94.0 51.9 73.4
MMAM-All 81.8 77.0 90.0 59.1 75.1

Table 1: Comparison of classification accuracies with different
classifers(%)

6 CONCLUSIONS AND FUTURE WORK

This paper presents the utilization of multi-modal markov as-
pect model for weakly supervised PolSAR image classification.
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(a) Water(Wa) (b) Woodland(Wo) (c) Building(Bu) (d) Cropland(Cr)

(e) Wo+Cr (f) Wa+Wo (g) Wa+Bu+Wo (h) Cr+Wo+Wa

Figure 2: Some training samples annotated with keywords.

(a) Original PolSAR image (b) Ground truth (c) ML-pixel (d) ML-patch

(e) MMAM-All (f) MMAM-Hist (g) MMAM-GMRF (h) MMAM-Huy

Figure 3: (a) Quantitative evaluation area of 1400 × 1200 pixels; (b) The corresponding hand-labeled ground truth; (c) Classification
result using pixel-based Wishart ML; (d) Classification result using patch-based Wishart ML (patch size:20 × 20); (e) Classification
result using MMAM with all features;(f) Classification result using MMAM with histogram features ;(g) Classification result using
MMAM with GMRF features ;(h) Classification result using MMAM with Huynen decomposition features.

It has been tested and validated on a large RadarSat-2 PolSAR
scene image classification task, and produces satisfactory clas-
sification results, it outperforms traditional Wishart ML meth-
ods with detailed pixel-level labeled training data, even when us-
ing only one feature-multichannel histogram. Moreover, we use
the over-segmentation based soft assignment techniques (Patch to
Pixel labels mapping) to reduce the block effect in each subimage

and improve the visual effects. While the results presented here
are encouraging, there is still a need for further improvements.
Future extensions would be the introduction of other sources of
contextual information like scale information and the combina-
tion with more informative feature descriptors.
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(a) Original PolSAR image (b) MMAM-All (c) ML-pixel result (d) ML-patch result

Figure 4: Results of the classification of a large PolSAR image (RadarSat-2 polarimetric SAR data of Flevoland in Netherlands, with
size of 4000 × 2400 pixels) into the four semantic classes: woodland, cropland, water, building.
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