
LUNAR GEOMORPHY 3D VISUALIZATION METHOD

Z. Yang, X. Qing, Z. BaoMing, L. JianSheng, L. ChaoZhen

Institute of Surveying and Mapping, ZhengZhou 450052, China – Zhouyang3d@163.com

KEY WORDS: Lunar exploration, Moon Image, Moon DEM, Level of Detail, Visualization

ABSTRACT:

Based on research of large-scale terrain visualization methods, we improve the planar Geometry Clipmaps method
by making use of GPU Vertex Processor to projection transform planar terrain into spherical terrain, spherical
view culling and spherical viewpoint controlling . We collected and deal with the lunar image and DEM to render
the lunar 3D map. The results show that the rendering algorithm’ efficiency is independent on datum but there is
distort problem in Lunar Pole.

 1 INTRODUCTION

Back to Moon, building Lunar base and exploration
Lunar resources have been the trend and hot dot of
international spaceflight. Lunar exploitation is the first
step of Chinese deep space exploration missions. The
successful launch of ChangE No.1 satellite indicated
that china have the ability to explore the deep space.
Obtain lunar remote image and 3D physiognomy data
in satellite remote and surveying technology and
rendering the 3D map in 3D visualization technology
is the one of main tasks of ChangE No.1 satellite. In
this paper, based on the research of large range terrain
visualization algorithm, we improved the Geometry
Clipmaps algorithm and the planar terrain be
transformed to the spherical terrain with GPU shaders.
We collect the lunar image and DEM and rendered the
lunar 3D map by use of the spherical view culling
technique and spherical viewpoint control technique
to assist human to know well the moon.

 2 PREVIOUS WORK

 2.1 The terrain render algorithm

A primary difficulty in terrain rendering is displaying
realistic terrains to the user at real-time frame rates.
Several terrain-rendering techniques have been
proposed that use Level of Detail (LOD) to generate a
simplified representation of a terrain.
Previous publications and applications can be divided
into two parts: Those with static level of detail
(S-LOD) and continuous level of detail technique
(C-LOD).
(1) S-LOD technique
Here the terrain is divided into tiles each of which is
represented by a set of TINs with varying resolutions.
Depending on the distance to the viewer for each tile a
TIN with appropriate projective triangle size is chosen
from the set. If regularly coarsened meshes are used
instead of TINs the method is called geo-mipmapping

[1].
(2) C-LOD Algorithms
The most elaborate terrain rendering technique known
today is the continuous level of detail technique

(C-LOD). It improves the sub-optimal approximation
quality of the S-LOD algorithms in a sense that the
triangulation is altered on a per triangle and not on a
per tile basis. This allows much better approximations
which adapt optimally both to the viewing distance
and to surface roughness.
Several main C-LOD algorithms include Lindstrom [2],
Duchaineau [3], Roettger [4], and Losasso[5].
The geometry clipmap is a recently proposed
approach that utilizing the potential of modern
graphics hardware. The Algorithm caches the terrain
in a set of nested regular grids centered about the
viewer (fig 1). The grids are stored as vertex buffers
in fast video memory, and are incrementally refilled
as the viewpoint moves. This simple framework
provides visual continuity, uniform frame rate,
complexity throttling, and graceful degradation[6].

Figure 1: The clipmap contains a fixed-size segment

of each mipmap level around an arbitrary focus point.
[6]

Those algorithms mentioned in previous section deal
with planar terrain. Clasen describe a terrain rendering
algorithm for spherical terrains based on clipmaps[7].
The algorithm replaces the underlying geometry with
one that maps better to the sphere. No matter how far
away the viewer is relative to the planet, he cannot see
more of it than one hemisphere. So the algorithm uses
concentric rings instead of rectangles. The resulting
spherical Geometry Clipmap is displayed in fig. 2.

In: Wagner W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7B
Contents Author Index Keyword Index

674

Figure 2: We use circular instead of rectangular rings

to cover the hemisphere. [7]

Spherical clipmaps avoid to the terrain distortion in
high latitude region and the different levels of detail
can be blended smoothly even when they are more
than one level apart. But the transformation of the

world space),,(zyx that provides an absolute
orientation of the spherical terrain to the view space

),,(zyx ′′′ that locates the viewer at the lunar pole
must be implemented in real time and the concentric
rings are transformed into plane irregularly (Fig 3). So
reading and updating data is complex and the
algorithm is implemented difficultly and inefficiently.

Figure 3: Points on the view hemisphere are
transformed into world space to sample the

rectangular height map. [7]

 2.2 Earth visualization system

With being short of data, terrain rendering focused on
earth mainly and the research of visualization in lunar
terrain and space environment is absent. At present,
the system of 3D digital earth applied successfully
include: Google Earth, World Wind, ArcGlobe, and so
on. Those systems focus on earth mainly and the
digital moon visualization system aren’t enough
mature and perfect. Google bring forth the
Google-Moon in internet[8]. But There are only
“Clementine” and “Appolo” remote image and not
include DEM data, so there have no the function of
3D visualization. Figure 4 shows the Google-Moon.
The NASA brings forth the lunar visualization
system- WorldWind-Moon. But the resolution of
image and DEM is low and is not meet to the request
of application.

Figure 4: Google-Moon

 3 ALGORITHM OVERVIEW AND

IMPLEMENTATION

 3.1 Geometry Clipmaps

A geometry clipmap renders a set of nested regular
grids centred around the viewpoint, with small grids
of high detail and large grids of low detail(Fig5). Each
grid contains n×n values and is called a clipmap level.

The levels are numbered starting from 0=l for the

coarsest level. The distance between values at level l

is the grid spacing, denoted gl . The vertices in a
clipmap level are stored in a vertex buffer on the
graphics card. The rectangular rings are divided into
12 parts, for more efficient rendering and view range
culling. As the viewpoint moves, the clipmap data is
updated so the grids remain centred around the
viewer.

Figure 5: Geometry Clipmaps nested regular grids

The vertices are stored as a toroidal array to enable

incremental updates, where only vertices from newly
visible areas are added, replacing areas that are no
longer visible. Figure 6 shows how toroidal arrays
make incremental updates possible. The heightmap
and viewer position are shown, as well as the actual
clipmap level data. Suppose the viewer is positioned
as in Figure 6(a). If we move to the southeast, as
shown in Figure 6(b), only the newly visible areas
along the bottom and right edges of the heightmap
need to be put in the array, and they are put in the top
and left edges of the clipmap, respectively,
overwriting the data that is no longer needed.

With the use of ring array and mod operation, after
the transformation, the vertex’s position is no change
in array. For example, if n =129, the vertex’s number
a is 0 128. When viewpoint is move and the

4 5 6 7

3 8

2

9

1 12 11 10

In: Wagner W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7B
Contents Author Index Keyword Index

675

number is changed to 1 129, the mod(129,129)=0.

Figure 6 (a): Before a change in viewpoint

Figure 6 (b): After a change in viewpoint to the

southeast

Figure 6: An example of the data in the heightmap
(top) and toroidal array (bottom).before and after a

change in viewpoint. The position of the viewer in the
heightmap is shown by the red dot.

 3.2 Transformation of planar terrain to
spherical terrain

The test data is Lunar DEM and image in WGS84
coordinate system. If the coordinate of a grid point is

),,(HLB , where B is longitude, L is latitude,

and H is elevation. We must transform the WGS84
coordinate system to OpenGL world space coordinate
system for spherical terrain rendering.

According to Eq.(3), we can transform the WGS84
coordinate system to OpenGL world space coordinate
system.

 （1）

where，

2

22
2

22 sin1

a
bae

Be
aN

−=

−
=

m1737400,m1738000 == ba ， a is
lunar long radius, and b is short radius. For reducing
the CPU’ burden and optimizing efficiency, we can
implement the equation by GPU.

 3.3 Spherical view range culling

As shown in Figure 7, for optimizing efficiency,
we use view range culling and back face culling
algorithm to eliminate invalid data.

Figure 7: Data culling based on viewpoint and
visible face

As shown in Figure 8, the spherical terrain can be

divided into two parts. One part is face to viewpoint

and one part is back to viewpoint. The ba ′′ in back
to viewpoint part is in view cone, but it is invisible to
viewer. So we must eliminate it with spherical view
range culling algorithm:

Figure 8: spherical view range culling

Updating zone

Visible zone Updated zone Moving direction

a b

a′ b′

s

e

c

[]
LBHNZ
BHeNY
LBHNX

sincos)(
sin)1(
coscos)(

2

+=
+−=

+=

Back Face Culling α

1.1.1 L1.1.2 L

1.1.3 L
1.1.4 L

1.1.5 V

1.2 Object

1.2.1 V

In: Wagner W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7B
Contents Author Index Keyword Index

676

⎪⎩

⎪
⎨
⎧

≤⋅

>⋅

visibleecsc

invisibleecsc

，

，

0

0
 （2）

Where, s is the center point of earth, e is

viewpoint, and c is a point on spherical surface in
view range. If the angle α from vector sc to vector

ec
090≤ , point s is invisible. Whereas point

s is visible.

As shown in Figure 9, We implement Geometry

Clipmaps algorithm with spherical culling, the
efficiency be shown by blue dashed. The red dashed
show the efficiency of Geometry Clipmaps algorithm
without spherical culling. The x-coordinate is the
deferent viewpoint and the y-coordinate is render fps.
Compared the result, we can find the Geometry
Clipmaps algorithm with spherical culling is more
efficient than Geometry Clipmaps algorithm without
spherical culling. The average frame of Geometry
Clipmaps algorithm with spherical culling is 23 fps
and the average frame of Geometry Clipmaps
algorithm without spherical culling is 9 fps.

Analyzing the test result, the render efficiency of
Geometry Clipmaps is steady. Using Geometry
Clipmaps algorithm with spherical culling, because
we must read different data file in hard disk, when
viewpoint ramble to boundary of data block, the
rendering efficiency is low. For example, a point in
Figure 9. Because the efficiency of Geometry
Clipmaps algorithm without spherical culling is low,
so the data file’s searching and reading don’t
influence the rendering efficiency.

Figure 9: Comparing the rendering frame of view
range culling

 3.4 Viewpoint control

Rambling in spherical surface, the controlling of
view point is more complex than ramble in plane. As
shown in Figure 10, if we rotate the line of sight n

in viewpoint P , we can rotate the line of sight n

about vector OP . Defining the great circle from

point 1P to 2P is APAP ′21 . Translating 1P

to 2P , we can rotate vector 1OP about great

circle’s normal OY . As shown in Figure 10, A
θ rotation of vector V about vector n should

produce the vector V ′ . The Equation is [12]
θθθ sin).().cos1.(.cos. nVnnVVV vvvvvvv

×+−+=′

（3）

Figure 10: Transformation of spherical view point

Figure 11: Rotating vector about pointed axis

 4 RESULTS AND DISCUSSION

 4.1 Test Data and Results

The test data was from USGS’s web. The global lunar
digital elevation models (DEMs) is at a resolution of
16 pixels/degree (e.g. about 1.895 km resolution). As
shown in Figure 12, the size of DEM grid is
5760×2880, created from a triangle irregular network
(TIN) of the original points-Unified Lunar Control
Network (ULCN2005). See Tables 1 for statistics on
this and the other networks.

The global lunar image data is Clementine
UVVIS(5 bands, 100m/pixel). The size of data is
163840×81920. In addition, there are high resolution
Appolo15 image and DEM in the zone of Appolo15
land in moon. The resolution of Appolo15 image is
1.5m/pixel, the size of data is 3319×3226 and grid cell
size is 50m.

O

P

X

Z

P0

P2
P1

Y

n

θ
A A′

0 50 100 150
0

5

10

15

20

25

30

35

40

45

50

Position

fp
s

A

θ

V
n V ′

In: Wagner W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7B
Contents Author Index Keyword Index

677

Figure 12: Lunar DEM

The spherical Geometry Clipmaps request the DEM
size equal to image half size in same LOD layer. For
example, if image size is 1024×1024, then the DEM
size must be 512×512. So we must resample the low
resolution DEM data with bi-linear interpolation
method.
Finally, we built the pyramid of DEM and image. The
amounts of pyramid layer are nine. The test results are
shown in Figure 13 to Figure 17.

Figure 13: Lunar front face 3D map

Figure 14: Lunar back face 3D map

Figure 15: Lunar local zone 3D map

Figure 16: Different resolution mosaic 3D map

Figure 17: The high resolution 3D map in Applo15

zone

 4.2 Conclusion and Future Work

We collected Lunar DEM and remote image,
eliminated data’s gross error, resampled the data, built
the data pyramid, and rendered the global lunar 3D
map real time. The frame of rendering is independent
on size of data. The future works include:
(1) The solution of distortion in lunar pole
Using the Eq.(1) performing in GPU, We can
transform the planar terrain to spherical terrain. But
the problem of projection distortion in lunar pole will
worsen the rendering effect. The projection result be
shown in Figure 18. Because there are best zone to
human explore moon and build lunar base, so we must
optimize the LOD and projection algorithm to
improve the rendering result.

Figure 18: projection distortion in lunar pole

(2) Higher precision lunar terrain rendering
With the restriction of data gained means, the lunar

In: Wagner W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7B
Contents Author Index Keyword Index

678

terrain and image’s resolution is low. So the rendering
result is not satisfied. New means of data gained must
be developed.
(3) The parallel visualization of multi-planet
The rendering algorithm presented in this paper
focused on single planet. Building 3D virtual space
environment, we must realize the parallel
visualization and seamless rambling on earth, moon,
mars, and so on. So we must study on space-time
reference frame, coordinate system transformation,
data structure, view range culling, data storage and
searches.

 ACKNOWLEDGEMENTS

We would like to thank Kan Ning, Zhang Yong,
Cheng Jinwei and Yao ZhiQiang for the work of
dealing with data and testing algorithm. We also
appreciate the publication of the Lunar DEM and
image data by NSGS
(http://pubs.usgs.gov/of/2006/1367/dems/).

 REFERENCES

[1] DE BOER, W. H. Fast Terrain Rendering Using

Geometrical Mipmapping. E-mersion Project

(2000).

[2] LINDSTROM, P., KOLLER, D., RIBARSKY,

W., HODGES, L. F., FAUST, N., AND

TURNER, G. Real-Time, Continuous Level of

Detail Rendering of Height Fields. In Proc.

SIGGRAPH ’96 (1996), ACM, pp. 109–118.

[3] DUCHAINEAU, M., WOLINSKY, M., SIGETI,

D. E., MILLER, M. C.,ALDRICH, C., AND

MINEEV-WEINSTEIN, M. B. ROAMing

Terrain: Real-Time Optimally Adapting Meshes.

In Proc. Visualization ’97 (1997), IEEE, pp.

81–88.

[4] ROETTGER, S., HEIDRICH, W.,

SLUSALLEK, P., AND SEIDEL, H.-P.

Real-Time Generation of Continuous Levels of

Detail for Height Fields. In Proc. WSCG ’98

(1998), EG/IFIP, pp. 315–322.

[5] LOSASSO, F., AND HOPPE, H. Geometry

clipmaps: terrain rendering using nested regular

grids. ACM Transactions on Graphics (2004),

769–776.

[6] HOPPE, H. Terrain Rendering Using

GPU-Based Geometry Clipmaps, ACM

Transactions on Graphics (2004).

[7] MALTE, C. HANS-CHRISTIAN, H. Terrain

Rendering using Spherical Clipmaps,

Eurographics/ IEEE-VGTC Symposium on

Visualization (2006)

[8] http://www.google.com/moon/

In: Wagner W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7B
Contents Author Index Keyword Index

679

	Papers

