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ABSTRACT:   
 
Based on research of large-scale terrain visualization methods, we improve the planar Geometry Clipmaps method 
by making use of GPU Vertex Processor to projection transform planar terrain into spherical terrain, spherical 
view culling and spherical viewpoint controlling . We collected and deal with the lunar image and DEM to render 
the lunar 3D map. The results show that the rendering algorithm’ efficiency is independent on datum but there is 
distort problem in Lunar Pole. 
 

 1 INTRODUCTION 

Back to Moon, building Lunar base and exploration 
Lunar resources have been the trend and hot dot of 
international spaceflight. Lunar exploitation is the first 
step of Chinese deep space exploration missions. The 
successful launch of ChangE No.1 satellite indicated 
that china have the ability to explore the deep space. 
Obtain lunar remote image and 3D physiognomy data 
in satellite remote and surveying technology and 
rendering the 3D map in 3D visualization technology 
is the one of main tasks of ChangE No.1 satellite. In 
this paper, based on the research of large range terrain 
visualization algorithm, we improved the Geometry 
Clipmaps algorithm and the planar terrain be 
transformed to the spherical terrain with GPU shaders. 
We collect the lunar image and DEM and rendered the 
lunar 3D map by use of the spherical view culling 
technique and spherical viewpoint control technique 
to assist human to know well the moon. 
 

 2 PREVIOUS WORK 

 2.1 The terrain render algorithm 

A primary difficulty in terrain rendering is displaying 
realistic terrains to the user at real-time frame rates. 
Several terrain-rendering techniques have been 
proposed that use Level of Detail (LOD) to generate a 
simplified representation of a terrain. 
Previous publications and applications can be divided 
into two parts: Those with static level of detail 
(S-LOD) and continuous level of detail technique 
(C-LOD). 
(1) S-LOD technique 
Here the terrain is divided into tiles each of which is 
represented by a set of TINs with varying resolutions. 
Depending on the distance to the viewer for each tile a 
TIN with appropriate projective triangle size is chosen 
from the set. If regularly coarsened meshes are used 
instead of TINs the method is called geo-mipmapping 

[1]. 
(2) C-LOD Algorithms 
The most elaborate terrain rendering technique known 
today is the continuous level of detail technique 

(C-LOD). It improves the sub-optimal approximation 
quality of the S-LOD algorithms in a sense that the 
triangulation is altered on a per triangle and not on a 
per tile basis. This allows much better approximations 
which adapt optimally both to the viewing distance 
and to surface roughness. 
Several main C-LOD algorithms include Lindstrom [2], 
Duchaineau [3], Roettger [4], and Losasso[5]. 
The geometry clipmap is a recently proposed 
approach that utilizing the potential of modern 
graphics hardware. The Algorithm caches the terrain 
in a set of nested regular grids centered about the 
viewer (fig 1). The grids are stored as vertex buffers 
in fast video memory, and are incrementally refilled 
as the viewpoint moves. This simple framework 
provides visual continuity, uniform frame rate, 
complexity throttling, and graceful degradation[6]. 
 

 
Figure 1: The clipmap contains a fixed-size segment 

of each mipmap level around an arbitrary focus point. 
[6] 

 
Those algorithms mentioned in previous section deal 
with planar terrain. Clasen describe a terrain rendering 
algorithm for spherical terrains based on clipmaps[7]. 
The algorithm replaces the underlying geometry with 
one that maps better to the sphere. No matter how far 
away the viewer is relative to the planet, he cannot see 
more of it than one hemisphere. So the algorithm uses 
concentric rings instead of rectangles. The resulting 
spherical Geometry Clipmap is displayed in fig. 2. 
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Figure 2: We use circular instead of rectangular rings 

to cover the hemisphere. [7] 
 
Spherical clipmaps avoid to the terrain distortion in 
high latitude region and the different levels of detail 
can be blended smoothly even when they are more 
than one level apart. But the transformation of the 

world space ),,( zyx  that provides an absolute 
orientation of the spherical terrain to the view space 

),,( zyx ′′′  that locates the viewer at the lunar pole 
must be implemented in real time and the concentric 
rings are transformed into plane irregularly (Fig 3). So 
reading and updating data is complex and the 
algorithm is implemented difficultly and inefficiently. 
 
 

 
   

Figure 3: Points on the view hemisphere are 
transformed into world space to sample the 

rectangular height map. [7] 
 
 2.2 Earth visualization system 

With being short of data, terrain rendering focused on 
earth mainly and the research of visualization in lunar 
terrain and space environment is absent. At present, 
the system of 3D digital earth applied successfully 
include: Google Earth, World Wind, ArcGlobe, and so 
on. Those systems focus on earth mainly and the 
digital moon visualization system aren’t enough 
mature and perfect.  Google bring forth the 
Google-Moon in internet[8]. But There are only 
“Clementine”  and “Appolo” remote image and not 
include DEM data, so there have no the function of 
3D visualization. Figure 4 shows the Google-Moon. 
The NASA brings forth the lunar visualization 
system- WorldWind-Moon. But the resolution of 
image and DEM is low and is not meet to the request 
of application. 

 
Figure 4: Google-Moon 

 
 3 ALGORITHM OVERVIEW AND 

IMPLEMENTATION  

 3.1 Geometry Clipmaps 

A geometry clipmap renders a set of nested regular 
grids centred around the viewpoint, with small grids 
of high detail and large grids of low detail(Fig5). Each 
grid contains n×n values and is called a clipmap level. 

The levels are numbered starting from 0=l  for the 

coarsest level. The distance between values at level l  

is the grid spacing, denoted gl . The vertices in a 
clipmap level are stored in a vertex buffer on the 
graphics card. The rectangular rings are divided into 
12 parts, for more efficient rendering and view range 
culling. As the viewpoint moves, the clipmap data is 
updated so the grids remain centred around the 
viewer. 
 
 
 

 
 
 
 
 
 
 
 

 
Figure 5: Geometry Clipmaps nested regular grids 

 
The vertices are stored as a toroidal array to enable 

incremental updates, where only vertices from newly 
visible areas are added, replacing areas that are no 
longer visible. Figure 6 shows how toroidal arrays 
make incremental updates possible. The heightmap 
and viewer position are shown, as well as the actual 
clipmap level data. Suppose the viewer is positioned 
as in Figure 6(a). If we move to the southeast, as 
shown in Figure 6(b), only the newly visible areas 
along the bottom and right edges of the heightmap 
need to be put in the array, and they are put in the top 
and left edges of the clipmap, respectively, 
overwriting the data that is no longer needed. 

With the use of ring array and mod operation, after 
the transformation, the vertex’s position is no change 
in array. For example, if n =129, the vertex’s number 
a is 0  128. When viewpoint is move and the 

4 5 6 7 

3 8 

2 

 

9 

1 12 11 10 

In: Wagner W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7B
Contents Author Index Keyword Index

675



number is changed to 1  129, the mod(129,129)=0. 
 

 
 

Figure 6 (a):  Before a change in viewpoint 
 

 
Figure 6 (b): After a change in viewpoint to the 

southeast 
 

Figure 6:  An example of the data in the heightmap 
(top) and toroidal array (bottom).before and after a 

change in viewpoint. The position of the viewer in the 
heightmap is shown by the red dot. 

 
 3.2 Transformation of planar terrain to 
spherical terrain 

The test data is Lunar DEM and image in WGS84 
coordinate system. If the coordinate of a grid point is 

),,( HLB , where B  is longitude, L  is latitude, 

and H is elevation. We must transform the WGS84 
coordinate system to OpenGL world space coordinate 
system for spherical terrain rendering. 

According to Eq.(3), we can transform the WGS84 
coordinate system to OpenGL world space coordinate 
system. 

 

                        （1） 
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m1737400,m1738000 == ba ， a  is 
lunar long radius, and b is short radius. For reducing 
the CPU’ burden and optimizing efficiency, we can 
implement the equation by GPU. 

 
 3.3 Spherical view range culling  

As shown in Figure 7, for optimizing efficiency, 
we use view range culling and back face culling 
algorithm to eliminate invalid data.  

 
 
 
 
 
 
 

 
 
 
 

 
 
 

Figure 7:  Data culling based on viewpoint and 
visible face 

 
As shown in Figure 8, the spherical terrain can be 

divided into two parts. One part is face to viewpoint 

and one part is back to viewpoint. The ba ′′  in back 
to viewpoint part is in view cone, but it is invisible to 
viewer. So we must eliminate it with spherical view 
range culling algorithm:  

  
 

Figure 8: spherical view range culling 
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Where, s  is the center point of earth, e  is 

viewpoint, and c  is a point on spherical surface in 
view range. If the angle α from vector sc  to vector 

ec  
090≤  , point s  is invisible. Whereas point 

s  is visible. 
 
As shown in Figure 9, We implement Geometry 

Clipmaps algorithm with spherical culling, the 
efficiency be shown by blue dashed. The red dashed 
show the efficiency of Geometry Clipmaps algorithm 
without spherical culling. The x-coordinate is the 
deferent viewpoint and the y-coordinate is render fps. 
Compared the result, we can find the Geometry 
Clipmaps algorithm with spherical culling is more 
efficient than Geometry Clipmaps algorithm without 
spherical culling. The average frame of Geometry 
Clipmaps algorithm with spherical culling is 23 fps 
and the average frame of Geometry Clipmaps 
algorithm without spherical culling is 9 fps. 

Analyzing the test result, the render efficiency of 
Geometry Clipmaps is steady. Using Geometry 
Clipmaps algorithm with spherical culling, because 
we must read different data file in hard disk, when 
viewpoint ramble to boundary of data block, the 
rendering efficiency is low. For example, a point in 
Figure 9. Because the efficiency of Geometry 
Clipmaps algorithm without spherical culling is low, 
so the data file’s searching and reading don’t 
influence the rendering efficiency. 

 
 

Figure 9: Comparing the rendering frame of view 
range culling 

 
 3.4 Viewpoint control 

Rambling in spherical surface, the controlling of 
view point is more complex than ramble in plane. As 
shown in Figure 10, if we rotate the line of sight n  

in viewpoint P ,  we can rotate the line of sight n  

about vector OP . Defining the great circle from 

point 1P  to 2P  is APAP ′21 . Translating 1P      

to 2P ,  we can rotate vector 1OP  about great 

circle’s normal OY . As shown in Figure 10,  A 
θ  rotation of  vector V  about vector n  should 

produce the vector V ′ . The Equation is [12]  
θθθ sin).().cos1.(.cos. nVnnVVV vvvvvvv

×+−+=′

（3） 
 

 
 
Figure 10: Transformation of spherical view point 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Rotating vector about pointed axis 
 

 4 RESULTS AND DISCUSSION 

 4.1 Test Data and Results 

The test data was from USGS’s web. The global lunar 
digital elevation models (DEMs) is at a resolution of 
16 pixels/degree (e.g. about 1.895 km resolution). As 
shown in Figure 12, the size of DEM grid is 
5760×2880, created from a triangle irregular network 
(TIN) of the original points-Unified Lunar Control 
Network (ULCN2005). See Tables 1 for statistics on 
this and the other networks. 

The global lunar image data is Clementine 
UVVIS(5 bands, 100m/pixel). The size of data is 
163840×81920. In addition, there are high resolution 
Appolo15 image and DEM in the zone of Appolo15 
land in moon. The resolution of Appolo15 image is 
1.5m/pixel, the size of data is 3319×3226 and grid cell 
size is 50m. 
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Figure 12:  Lunar DEM 

 
The spherical Geometry Clipmaps request the DEM 
size equal to image half size in same LOD layer. For 
example, if image size is 1024×1024, then the DEM 
size must be 512×512. So we must resample the low 
resolution DEM data with bi-linear interpolation 
method. 
Finally, we built the pyramid of DEM and image. The 
amounts of pyramid layer are nine. The test results are 
shown in Figure 13 to Figure 17. 

 
Figure 13: Lunar front face 3D map 

 

 
Figure 14:  Lunar back face 3D map 

 

 
Figure 15: Lunar local zone 3D map 

 

 
Figure 16: Different resolution mosaic 3D map 

 

 
Figure 17: The high resolution 3D map in Applo15 

zone 
 

 4.2 Conclusion and Future Work 

We collected Lunar DEM and remote image, 
eliminated data’s gross error, resampled the data, built 
the data pyramid, and rendered the global lunar 3D 
map real time. The frame of rendering is independent 
on size of data. The future works include: 
(1) The solution of distortion in lunar pole 
Using the Eq.(1) performing in GPU, We can 
transform the planar terrain to spherical terrain. But 
the problem of projection distortion in lunar pole will 
worsen the rendering effect. The projection result be 
shown in Figure 18. Because there are best zone to 
human explore moon and build lunar base, so we must 
optimize the LOD and projection algorithm to 
improve the rendering result. 

 
Figure 18: projection distortion in lunar pole 

 
(2) Higher precision lunar terrain rendering 
With the restriction of data gained means, the lunar 
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terrain and image’s resolution is low. So the rendering 
result is not satisfied. New means of data gained must 
be developed. 
(3) The parallel visualization of multi-planet 
The rendering algorithm presented in this paper 
focused on single planet. Building 3D virtual space 
environment, we must realize the parallel 
visualization and seamless rambling on earth, moon, 
mars, and so on. So we must study on space-time 
reference frame, coordinate system transformation, 
data structure, view range culling, data storage and 
searches. 
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