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Abstract: The prime purpose of the research study was to elucidate the potential of remotely sensed data for estimation of water
quality parameters (WQPs) in inland and coastal waters. The useful application of remotely sensed data for operational monitoring of
water bodies demand for improved algorithms and methodology. The in situ hyperspectral Spectroradiometer data, water quality data
and Airborne Imaging Spectroradiometer for Applications (AISA) data of Apalachicola Bay Florida, USA were collected. The data
was analyzed to develop the models for assessment of total suspended sediment (TSS), chlorophyll-a (chl-a), and secchi depth. The
analysis of collected spectral data reveals that a peak reflectance in red domain was well correlated with chlorophyll-a concentration.
The optical depth is found to be strongly correlated with Chl-a and TSS. In order to examine the feasibility of multispectral data for
water quality monitoring; AISA data was integrated into band widths of ALOS/AVNIR-2 sensor. The combination of three bands,
band 2, 3 and band 4 was developed to correlate the remotely sensed data with TSS. The developed regression models showed good
correlation with water quality parameters and may successfully applied for estimation of WQP in surface waters. The research work
demonstrates an example for the successful application of remotely sensed data for monitoring the distribution of water quality
parameters in water bodies.

From the perspective of remote sensing, waters can generally be
divided into two classes: case-I and case-1I waters (Morel,
1977). Case-1 waters are those dominated by phytoplankton
(e.g. open oceans) whereas case-Il waters containing not only
phytoplankton, but also suspended sediments, dissolved organic
matter, and anthropogenic substances for example some coastal
and inland waters (Gin, 2003). Remote sensing in case Il waters
has been far less successful. Many scientists have pointed out
that this is mainly due to the complex interactions of four
optically active substances in case-II waters: phytoplankton
(chl-a), suspended sediments, coloured dissolved organic matter
(CDOM), and water (Novo et al., 1989; Quibell, 1991; Lodhi et
al., 1997; Doxaran et al., 2002). The spectral characteristics of
different water bodies and at different sampling points of the
same water body are not same. Optically active components in
the water bodies influence is qualitative and quantitative nature
of the spectral signatures. The main components responsible for
change in spectral signatures are yellow substance,
phytoplankton pigments, and non living suspended matters and
water itself. Remote sensing of water-constituent concentrations
is based on the relationship between the remote-sensing
reflectance, and the inherent optical properties, namely, the total
absorption and the backscattering coefficients (e.g., Gordon et
al., 1988). Chl-a concentration and total suspended solids (TSS)
are two important water quality variables influencing the
qualitative and quantitative nature of the spectral signatures.
The objective of present research is to develop relationships
between water quality parameters (WQPs) and remotely sensed
data (RSD) and to elucidate the spatial and temporal variation in
chlorophyll-a concentration and TSS in Apalachicola Bay,
Florida. The potential of simulated multispectral remote sensing
data for delineation of WQPs was comprehensively examined.

1. INTRODUCTION

Assessment of water quality parameters in water bodies is one
of the most scientifically relevant and commonly used
application of remote sensing. Water quality monitoring
requires regular and relevant observations which cannot be
obtained by conventional field monitoring campaigns.
Remotely sensed data with high spatial resolution and frequent
acquisition frequency offer solution to monitor variability of
water quality parameters up to several times per year.
Application of remotely sensed data allows to discriminate
between water quality parameters and to develop a better
understanding of light, water and substances interactions.
Hyperspectral remote sensing allows accurate and potential use
of entire range of electromagnetic spectrum recorded in
extremely narrow wavebands for monitoring water quality on
multiple sites in water bodies. The operational monitoring and
useful application of remote sensing in water bodies demands
for improved methodology and sophisticated algorithms. Most
of the satellite sensors record data in only a few broad spectral
bands, the resolutions of which are too coarse to detect much of
the spectral ‘fine structure’ associated with optically active
substances in water (Goodin et al. 1993). The successful
quantification of water quality parameters using remote sensing
is affected not only by the type of waters under investigation,
but also by the sensor used (Liu et al. 2003). The remotely
sensed techniques for operational monitoring and management
of water quality parameters (WQPs) depend on the substance
being measured, its concentration, influencing environmental
factors and the sensor characteristics. Effectiveness of remotely
sensed data in water quality assessment of different water
bodies has been examined by numerous researchers (Han, 2006;
Dekker, 2001; Gitelson, 2007, etc.).
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2. STUDY AREA

The Apalachicola National Estuarine Research Reserve, 1 of 25
sites designated by the National Oceanic and Atmospheric
Administration, covers approximately 246,766 acres (figure 1)
and has an average depth of three meters The Bay is connected
to the Gulf of Mexico through four major inlets: Indian Pass
and West Pass at the western end, and East Pass and Lanark
Reef at the eastern end. Most of the freshwater discharged into
the Bay flows from the Apalachicola River (Wang et al. 2010).
Water in the Bay is moderately stratified. The substrate of the
Bay is predominately soft silt and clay with some sandy areas
(Dardeau et al. 1992). Apalachicola Bay is a river-dominated,
bar-built shallow estuary. It receives freshwater flows from the
Apalachicola, Chattahoochee, and Flint River system (ACF),
which drains over 60,000 km® of Georgia, Alabama, and
Florida (Livingston 2006). Tides in Apalachicola Bay are mixed,
with an uneven high and low tide and a range of 0.2 to 0.6 m
(Huang et al. 2002). Water quality in estuarine ecosystems is
affected by many natural and anthropogenic factors.

]

The red line shows the extent of the Apalachicola National Estuarine

Research Reserve. N -———
A 0 36 12 18 Miles

Figure 1. Map showing the research study Area: Apalachicola
Bay, Florida

3. MATERIAL & METHOD
3.1 In situ measurements

Two independent in situ datasets were collected for model
calibration and validation respectively. The ground truth data of
Apalachicola Bay included water sampling for laboratory
analysis (e.g. chl-a and seston), on-site measurements (e.g.
Secchi depth, water depth), weather observations (e.g. wind
speed and sky condition) and upwelling radiance and
downwelling irradiance hyperspectral data.

Two pairs of Ocean Optics USB 2000 hyperspectral
radiometers was used (the dual headed system, i.e., upward
looking and downward looking Ocean Optics sensor) for
acquiring upwelling radiance L(A), and downwelling irradiance
E(M)ine just above and below the water surface. The
hyperspectral data was collected in the spectral range of 400 nm
to 900 nm. To match their transfer functions, the inter-
calibration of the radiometer was accomplished by measuring
the upwelling radiance (L., ) of a white Spectralon reflectance
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standard, simultaneously with incident irradiance (E,;). Solar
zenith angles ranged from approximately 20° to a maximum of
55°. Measurements were taken over optically deep water and an
average of 10 consecutive spectra was used. The term
reflectance is defined as the ratio between a reflected and an
incident quantity of light. The ratio can consist of two radiances,
two irradiances, or radiance and irradiance (Aas, 2009).
Percentage spectral reflectance R(A) was computed as:

YoR(A) =[LUA),, | BA)ine] <VEA) car! LUA ] X R(A) 0 <100

R(A)cw is the reflectance of the Spectralon panel linearly
interpolated to match the band centers of each radiometer. At
each station a standard set of water quality parameters was
measured. Samples were filtered to estimate chlorophyll-a by
spectrophotometric ~ methods. TSS  was  determined
gravimetrically using pre-ashed and tared filters. Filters and
retained particulate matter were dried (60 °C for at least 24 h)
and reweighed. The data was collected during field campaign
carried out by the field crew of Center for Advanced Land
Management Information Technologies (CALMIT), School of
Natural Resources, University of Nebraska-Lincoln, USA.

Parameters Min | Max | Med | Avg SD
Chl-a (pg/l) 26 | 21.1 4.8 7.1 5.5
Seston (mg/1) 24 | 287 11.7 12.0 8.4
Secchi Depth (m) | 0.35 | 0.35 0.9 0.8 0.3
Water Depth (m) 1 545 1.8 1.9 0.9

Table 1. Descriptive statistic (Minimum, Maximum, Median,
Average, Standard Deviation) of measured water quality
parameters

3.2 Airborne Imaging Spectroradiometer for Applications
(AISA) Data

Visible to near infrared (NIR) hyperspectral airborne imaging
Spectroradiometer is a valuable technology for remote sensing
of the earth’s surface because of its combination of good spatial
and spectral resolution. Hyperspectral remotely sensed data was
acquired by an aerial remote sensing platform. The instrument
array included an AISA Eagle hyperspectral imager from
Visible to Near Infrared (VNIR). The AISA Eagle is a solid-
state, push-broom instrument that has the capability of
collecting data with high spatial and spectral resolution. The
spectral range of AISA eagle is 390 to 1000 nm in up to 512
bands. The sensor has an Inertial Navigation System (INS) and
(Differential Global Positioning System) DGPS in order to
provide spatially accurate data. The AISA Eagle pre-processing
software provides for the automatic geometric correction,
rectification, mosaicking, and calculation of at-platform
radiance by applying calibration coefficients referenced to well-
characterized spectroradiometric targets (Mishra, 2007). The
algorithm uses the DGPS and attitude information from the INS
to perform geometric, georeferencing and mosaicking
operations (Makisara et al., 1994). AISA Eagle data used for
the present study were acquired in the spectral range of 400 to
980 nanometer between 0330 and 0430 h (CST) on 3™ and 4th
April 2006 when the solar zenith angle was close to 70°. The
sensor altitude was (2.073 km), and the image was acquired at
nadir at a spatial resolution of 2 m and spectral resolution of 62
bands. Ground data indicated low wind (~ 3 m s'), high
visibility (40 km), and clear skies. The site selected from flight
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lines covered an area of approximately 1.6 km? in the vicinity
of Apalachicola Bay. The image data were converted to at-
platform radiance by applying the calibration coefficients
provided by AISA processing software ‘Caligeo’ for subsequent
processing.

3.3 Atmospheric correction

The radiance received by a sensor, L(4;), at the top of
atmosphere (TOA) in a spectral band centered at a wavelength,
A;can be divided into the following components (Gordon et al.,
1983):

L,(4;) = L, (A;) + Lo (A4) + T(A4) Ly (4;) + t(4) L, (4;)

Where L,(4) and L,;) represents radiances generated along
the optical path in the atmosphere by Rayleigh and aerosol
scattering respectively; L,(4;) is contribution arising from the
specular reflection of direct sunlight from the sea surface or the
sun glint component; L,,(4;)is desired water leaving radiance; 7
is direct atmospheric transmittance; and ¢ is diffuse atmospheric
transmittance of the atmosphere.

The goal of atmospheric correction is to remove the
contributions of scattering in the atmosphere and reflection
from the water surface from the TOA radiances measured by a
sensor in the visible region of the spectrum. AISA Eagle data
were atmospherically corrected by using FLAASH (Fast Line-
of-sight Atmospheric Analysis of Spectral Hypercubes), a first-
principles atmospheric correction algorithm for visible to near
infrared (NIR) hyperspectral data. FLAASH atmospheric
correction uses MODTRAN code and typically consists of three
steps (Matthew er al., 2003). FLAASH uses the standard
equation for spectral radiance at the sensor level, L, in the solar
wavelength range (neglecting thermal emission) from a flat
Lambertian surface or its equivalent (Vermote et al., 1994).

4 R B R

+ £
1-R,S) 1-R,S)
Where R is pixel surface reflectance, R, is surface reflectance
averaged over the pixel and a surrounding region, S = the
spherical albedo of the atmosphere, L, the radiance
backscattered by the atmosphere, and 4 and B are the
coefficients that depend on atmospheric and geometric
conditions but not on the surface. Each of these variables
depends on the spectral range of the selected channel; the
wavelength index has been omitted for simplicity. The first
term in above equation corresponds to radiance that is reflected
from the surface and travels directly into the sensor. The second
term corresponds to radiance from the surface that scattered by
the atmosphere into the sensor, resulting in a spatial blending,
or adjacency, effect. ENVI 4.3, digital image processing
software, was used to process the AISA data. The image was
first geometrically rectified to UTM (Universal Transverse
Mercator) projection (Zone 16; Datum: WGS84). The
geometrically and radiometrically corrected AISA image was
used in the analysis.

+ L

a

4. MODEL DEVELOPMENT

The sub-surface spectral reflectance and atmospherically are
depicted in figure 2 and figure 3 respectively. The acquired
spectral data of the Apalachicola bay, USA represents first
reflectance peak in the green domain near 550 nm and the
second reflectance peak in the red domain showing turbid water
with low CDOM. The peaks near 700 nm clearly proof the
presence of chlorophyll in the bay. The field, laboratory and
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remotely sensed data were analyzed in a systematic manner.
The collected spectrum shows that the qualitative nature of the
acquired signals are same, however, the quantitative nature vary
from point to point in the water body.
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Figure 2. Sub-surface hyperspectral reflectance of Apalachicola
Bay, USA
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Figure 3. AISA reflectance of Apalachicola Bay, USA

The amount of TSS present in the water body defines the water
category. Chlorophyll-a concentration and TSS were not
correlated well (Figure 4) with the determination coefficient of
linear relationship R* < 0.33. It depicts that chl-a was not the
only characteristic controlling water quality, confirming that the
waters belonged to typical case-II water group (Gitelson, 2008).
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Figure 4. Correlation between chl-a and TSS
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The ability to monitor water quality parameters in case II waters
requires high resolution remotely sensed data and suitable
techniques to examine the diverse nature of optical constituents
present in the water body. Band ratio algorithms were
developed to establish the relationship between the reflectance
and selected water quality parameters. Band-ratioing did not
universally give the best results but in many cases did; band
ratioing has been suggested as the most appropriate approach
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elsewhere (Legleiter et al. 2005). In order to elucidate the
potential of multispectral remote sensing for water quality
monitoring, the AISA data is integrated in to band width of
ALOS/AVNIR/2 sensor as follow;

500 600
Band 1 = jm R(A)dA Band 2 = LZO R(A)dA

690 890
Band 3 = Lm R(A)dA Band 4 = jm R(A)dA

4.1 Chlorophyll-a

In case I waters, concentrations of chlorophyll-a can be quite
satisfactorily estimated with satellite images by using an
empirical model and interpreting the received radiance at
different wavelengths (Gordon and Morel 1983). However, in
case I waters owing to complexity of the water constituents the
retrieval of chl-a is difficult task and needs advance techniques
and approaches. The pronounced scattering/absorption features
of chlorophyll-a are: strong absorption between 450—475nm
(blue) and at 670nm (red), and reflectance maximums at 550
nm (green) and near 700nm (Red Peak). A variety of algorithms
have been developed for retrieving chl-a in turbid waters. All
are based on the properties of the reflectance peak near 700 nm
and the ratio of that reflectance peak to the reflectance at 670
nm (Gitelson et al., 2008). Gitelson, 1992 studied the behaviour
of the reflectance peak near 700nm and concluded that the
700nm reflectance peak is important for the remote sensing of
inland and coastal waters with regard to measuring chlorophyll.
Han, 2005 pointed out that he spectral regions 630-645 nm,
660-670 nm, 680—-687nm and 700— 735 nm were found to be
potential regions where the first derivatives can be used to
estimate chlorophyll concentration. Dekker, 1991 mentioned
that the scattering and absorption characteristics of chlorophyll-
a can be studied when more than one band is used.
Hoogenboom et al.,, 1998 determined that a ratio using an
Advanced Visible-Infrared Imaging Spectrometer (AVIRIS)
band located near 713 nm with the band at 667nm was the most
sensitive for chlorophyll retrieval for inland waters. A similar
ratio (Rg74/R70s5) has been demonstrated to be optimal for inland
lakes and rivers (Thiemann and Kaufmann, 2000). Three types
of independent variables were tested: single spectral band,
ratios of spectral bands, and combinations of multiple bands to
develop linear regression equations and 1’ values were
computed.
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Figure 5. Relationship b/w chl-a and reflectance ratio

It was observed that the ratio of Ry/R¢75 is well correlated with
chlorophyll-a concentration. The developed model is of the
following form;

Chl —a(ug /1) = m(Ry / Rgs)” + n(Roy / Ry ) + 15 Where m,
n and | are empirical coefficients.
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In case 2 waters, the presence of other optically active
constituents (OACs) effect the nature of the signals and the
discrimination in these constituents is complex. Dall'Olmo et al.,
2003 provided evidence that a three band reflectance model,
originally developed for estimating pigment contents in
terrestrial vegetation (Gitelson et al., 2003), could also be used
to assess chl-a in turbid waters. The model relates pigment
concentration to reflectance R(4,) in three spectral bands A;:
Pigment concentration = R750*(R670'1-R700'1)
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Figure 6. Relationship b/w chl-a and 3 band model

The developed model is of the following form;
Chl —a(ug /1) =m[R 4 * (R, -Rog )]+ n s where m and

n are empirical coefficients.
The relationship between chl-a and AVNIR-2 (Bands/Band,) is
demonstrated in figure 7.
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Figure 7. Relationship b/w chl-a and AVNIR-2 bands
reflectance ratio

The developed model is of the following form;
Chl-a(ug/)=n{Log(B,/B,)]* +n[Log(B,/ B))]+I ;where m, n
and | are empirical coefficients.

4.2 Total Suspended Matter (TSM)

TSS concentrations regulate light attenuation in inland and
estuarine systems. In coastal waters, light scattering by
suspended particles strongly affects light propagation in the
water column (Lee et al., 2005), and determines to a large
extent the magnitude of surface reflectance (Sathyendranath et
al., 1989). Miller and McKee, 2004 demonstrated the
application of MODIS (Terra) 250m data to quantify TSS using
a linear regression model relationship established between
MODIS band-1 (620—670nm) and in situ measurements of
concentrations of inorganic-dominated TSS in the coastal
northern Gulf of Mexico. Water colour associated with
estuarine systems is typically characterized by high levels of
total suspended solids (TSS), CDOM and chlorophyll,
exhibiting a complex mixture of contributing colour
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constituents (Bukata et al., 1995). Total suspended matters (or
seston) represent living organic matter (mainly Phytoplankton)
and inorganic suspended solids (tripton). Tripton (Inorganic
material & detritus) mainly contribute to scattering of light with
low absorption. Absorption is normally neglected for the
inorganic particles such as suspended sediments. Empirical
relationships between spectral properties and total suspended
matter showed good correlation with NIR/Green band ratio as
illustrated in figure 8. The developed model is as follow;
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Figure 8. Relationship between TSS and reflectance ratio

TSM (mg /l) = m(R815 /R560) + n; Where m and n are

empirical coefficients.

The relationship between chl-a and AVNIR-2 (Band;/Band,) is
demonstrated in figure 9 and the model is shown below.
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Figure 9. Relationship b/w TSS and ALOS/AVNIR-2 (3 band)
reflectance ratio

TSSmg ) =n{(B, +B,)/B)F +r(B, +B)(B)}+1 : where m, n

and | are empirical coefficients.
4.3 Secchi Depth (SD)

The measurement of water transparency has been attempted by
various methods, most commonly based on light attenuation
principles (Mobley 1994). The estimation of light attenuation in
water bodies is not a trivial task, and therefore simpler methods
have been proposed for the operational estimation of water
transparency (Gomez, 2009). The best known is the Secchi disc,
which is a black and white disc 20 cm in diameter that is used
to estimate water transparency visually, by measuring the depth
at which the disc is no longer visible. The main problem with
estimating water transparency with the SD is the spatial
significance of the samples, which are expensive to obtain and
refer to single-point measurements. Remote sensing can be an
ideal tool for monitoring water transparency. The secchi depth
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is found to be well correlated with reflectance ratio of R50/Rsg
(NIR/Green). The simple band ratio technique is effective in
monitoring SD by means of remotely sensed data.
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Figure 10. Relationship b/w secchi depth and reflectance ratio

SD(m)=m(R.s,/ Rssy)+n 5 where m and n are empirical

coefficients.

5. CONCLUDING REMARKS

Remote sensing is proposed as a useful tool for monitoring
water quality parameters up to several times per year and offer
valuable data on the seasonal variability of water quality. The
research work demonstrates the feasibility of hyperspectral and
multispectral remotely sensed data for monitoring the spatial
and temporal variations of water quality parameters. The band
ratio approach is effective for development of water quality
algorithms and to minimize the effect of confounding
environmental variables. It was found that the simple two band
reflectance ratio Ryy/Rs7 is well correlated with chl-a
concentration. The three band model R750*(R67O'I-R700'1) is
found to be predictor of chl-a concentration in case-II waters.
The logarithmic ratio of ALOS/AVNIR-2 band 3 and band 1
was related with chl-a concentration in the study area. However,
due to complexity of water and wide band width, the accuracy
was not high. The ratio of NIR and green domain is best
predictor of TSS. In case of multispectral remote sensing, the
developed 3 band model including ALOS/AVNIR-2 band 4,
band 3 and band 2 is well correlated with TSS. Empirical and
semi-empirical algorithms are easy to use; however, the
coefficients used in empirical algorithms are derived from data
sets that do not necessarily represent all natural variations. The
developed algorithms are based on the limited data set. More in
situ water quality data, hyperspectral data and multispectral data
is needed to calibrated and validated the models. Moreover, the
spatial and temporal variability of water quality variables in the
Apalachicola Bay needs investigation. It is important to
incorporate water quality assessment as an integral part of water
resources and environmental planning and management.
Remotely sensed data is effective and efficient tool for
monitoring the distributions of water quality parameters in
inland and coastal waters and to support water management
strategies.
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