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ABSTRACT:  

Gross primary productivity (GPP) is a critical flux determining the quantity of carbon entering an ecosystem. Thus, studying GPP at 
larger spatial and longer time scales is necessary to identifying locations of potential sinks or sources of carbon. This study employs 
remote sensing techniques to estimate savanna GPP in the Northern Territory (NT), Australia using MODIS (Moderate Resolution 
Imaging Spectro-radiometer) data. A light use efficiency algorithm was used with inputs from fraction of absorbed 
photosynthetically active radiation (fPAR) from the latest (Collection 5) MODIS product, regional specific climate data and field 
based light use efficiency (LUE) to estimate GPP for the entire savanna region in NT from 2000 to 2007. Results showed that GPP 
estimated with this approach captured the magnitude of GPP quite well with only 6% error compared to flux tower based GPP. The 
estimated GPP was then used to describe the spatial and temporal variations across the NT savanna region. The estimated GPP 
captured the spatial patterns reasonably well with closed forest having six times more GPP than Acacia vegetation. Whilst, in terms 
of inter-annual variability, arid ecosystems had higher variation (>20%) in GPP than forests (<10%) and this was associated with 
large variations in rainfall (>30% for arid vegetation versus 19% for forest).These findings are similar to other studies elsewhere and 
prove that a simple remote sensing based LUE models (with reliable meteorological data) can effectively capture the magnitude and 
patterns of GPP in savanna ecosystem in northern Australia. 
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1. Introduction 

Savannas are important ecosystems in Australia, where they 
account for 33% of the terrestrial carbon stores (Williams et al., 
2004). Nevertheless, the gross primary productivity or GPP 
(carbon input into ecosystems through photosynthetic 
assimilation) and its spatial variability are still uncertain 
(Barrett et al., 2005; Hutley et al., 2005). Thus, estimating the 
correct magnitude of GPP and studying its patterns over large 
spatial extent and longer time scales is necessary to identifying 
locations of potential sinks or sources of carbon. Moreover, it is 
also critical to understand ecosystem responses to major 
perturbations due to climate change and increased atmospheric 
CO2 concentrations. For northern Australia, estimating savanna 
GPP is critical due to their vast spatial extent (almost 2 million 
km2), vulnerability to climate change (increased fire regime, 
reduced water availability) and poor management (over 
grazing) (Global Carbon Project, 2003; Hennessy et al., 2004). 
 
Mapping and quantifying GPP across large spatial areas has 
become feasible with satellite remote sensing that routinely 
monitors the earth. One of the methods for mapping GPP is 
using a light use efficiency (LUE) approach that takes 
advantage of remote sensing data (vegetation), meteorological 
inputs and relies on empirical relationships or constants such as 
LUE (Prince and Goward, 1995; Landsberg and Waring., 1997; 
Goetz et al., 1999; Running et al., 2000). Currently, the only 
satellite sensor providing GPP product for the entire globe at 
sufficient spatial and temporal resolutions for carbon cycle 
research is MODIS (Moderate Resolution Imaging Spectro-
radiometer) (Running et al., 2000). The MODIS satellite 
sensors routinely measure radiances that are used to produce a 

range of products, including GPP. GPP is generated from 
MODIS data using a LUE (light use efficiency) algorithm 
(Heinsch et al., 2003) at 1 km spatial resolution and delivered to 
the user community as 8 day composites. 
 
One major source of uncertainty for such models is the use of 
globally gridded meteorological fields to represent local 
meteorology because weather data is not available at every 
point across the land surface (Zhao et al., 2005). This can result 
in about 20% difference between estimated and simulated GPP 
(Zhao et al., 2006; Jung et al., 2007). Consequently there have 
been a small number of recent studies that have attempted to 
estimate GPP without incorporating meteorological data (Sims 
et al., 2008; Jung et al., 2008). Nevertheless, there are still 
many good remote sensing based LUE models that provide 
reasonably good estimation of GPP (Landsberg and Waring, 
1997; Anderson et al., 2000; Xiao et al., 2005a and b; Maselli et 
al., 2006; Yuan et al., 2007; Kanniah et al., 2009). These studies 
have illustrated that reliable estimates of satellite based 
vegetation indices such as fPAR, NDVI (Normalised Difference 
Vegetation Index), EVI (Enhanced Vegetation Index) and local 
meteorological data can realistically reproduce ecosystem GPP 
patterns and magnitudes. In a previous study Kanniah et al. 
(2009) showed that accurate estimates of input parameters 
(PAR, fPAR, LUE, VPD and TMIN scalars) can produce reliable 
estimate of GPP even with a simple LUE model for a single site 
in northern Australia. The current study is an extension of the 
previous study to: 

(i) Quantify the monthly magnitude of tropical savanna 
GPP in the entire savanna region in Northern 
Territory (NT) using the latest available biophysical 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Volume XXXVIII, Part 8, Kyoto Japan 2010

553



 

(fPAR) data from MODIS Collection 5, savanna LUE  
and regional specific meteorological data.  

(ii) Assess the accuracy of the estimated GPP (in (i) 
above)  
(a) with GPP measured by a flux tower in (Howard 

Springs) in Northern Territory and   
(b) by analysing its spatial and temporal patterns 

according to different vegetation types in the 
savanna region of the NT 

2. Study region 
 
The Northern Territory (NT) is a federal territory of Australia; 
occupying much of the central northern regions. Savanna 
ecosystems in the NT cover ~47.8% (based on classification by 
Fox et al., 2001) of the NT’s land area and represent about 
32.6% of the total savanna area (1.97 million km2) in Australia 
(Fox et al., 2001). Thus, savannas subside in areas of high 
spatial variation in climate, vegetation structure and 
composition, (Williams et al., 1996; Eagan and Williams, 1996) 
and possibly productivity. On a broader scale, savanna in the 
NT can be grouped into savanna open forest, savanna 
woodland, savanna grasslands, Acacia woodland and 
shrublands; based on the height of the tallest stratum and 
canopy projective cover (Specht and Specht, 2002). Other 
ecosystems such as monsoon rainforest, floodplains and 
riparian areas in small patches are also found within the vast 
matrix of savanna (Woinarski et al., 2007). Fox et al. (2001) 
classified savanna vegetation in northern Australia into 26 
broad vegetation groups (BVG), of which, 19 BVG are found in 
the NT. 
 
3 Data and methodology 
 
A simple LUE model (Equation 1) formulated by Monteith, 
1972 and modified by the MODIS land science team (Heinsch 
et al., 2003) was used in this study to estimate GPP for the NT 
savanna region as follows:  
 
GPP (g C m-2 day-1) = APAR (MJ) x LUE (g C MJ-1) x TMIN 
scalar x VPD scalar    (1) 
 
Where,  
APAR= total absorbed Photosynthetically Active solar 
Radiation (PAR) by plants and it is estimated as fPAR (fraction 
of PAR) x PAR)) 
LUE= maximum potential LUE of a particular vegetation type 
TMINscalar and VPDscalar = environmental constraints or stress 
(daily minimum temperature and daytime VPD) that can reduce 
the maximum LUE (LUE = maximum LUE x VPDscalar x 
TMINscalar). The scalars vary from 0 to 1.  
 
MODIS Collection 5 fPAR/LAI data (MOD15) from the Terra 
sensor were used in this study since it was validated against 
field data and showed an acceptable accuracy for savanna 
vegetation in northern Australia (Kanniah et al., 2009). The 
spatial resolution of these data is ~ 1 km (926.62 m) and is 
aggregated into 8 day composites. These images were 
downloaded from NASA (National Aeronautic and Space 
Administration) website and processed to include only savanna 
region in the NT and best quality pixels (fPAR that were 
derived by Main Radiative Transfer algorithm under cloudless 
conditions, QC = 0) (Myneni et al., 2002). Similarly, climate 
data (shortwave solar radiation, temperature and relative 
humidity) were obtained from SILO and processed to match 

fPAR data (spatial resolution and temporal aggregation of 8 
days). Daytime VPD was calculated in this study using equation 
provided in Jeffrey et al., (2001). These data were used together 
with a site specific savanna LUE (1.26 g C m-2 MJ PAR-1) 
(Kanniah et al., 2009) to estimate GPP for the entire NT 
savanna region. The datasets and overall methodology adopted 
to estimate GPP at the regional scale in the NT are shown in 
Figure 2.  

 
Figure 1: Flow chart showing datasets and methodology 
adopted to estimate GPP (gross primary productivity) for the 
Northern Territory (NT) savanna region using a LUE (light use 
efficiency) algorithm.  
 
4. Results and Discussion 

4.1 Validation of estimated GPP 
 
GPP estimated in this study were extracted at the Howard 
Springs flux tower site (single pixel of ~ 1 km2) and compared 
with tower derived GPP (Beringer et al., 2007). Results (Figure 
2) show that GPP calculated using Equation (1) were not 
significantly different from tower GPP (t115,63 = 0.90, p= 0.37). 
This was also agreed by high index of agreement (IOA =0.93), 
low RMSE (0.80 g C m-2 day-1) and relative predictive error 
(RPE =-6.3%) values. Overall, GPP estimated in this study 
agreed well with tower derived GPP over annual time scales (an 
underestimation of only 6%). Seasonal analysis shows an 
underestimation of 12.1% in the wet season (IOA = 0.55 and 
RMSE of 1.02 g C m-2 day-1). In the dry season however, 
modelled GPP agreed well with tower GPP (IOA 0.95 and 
RMSE of 0.62 g C m-2 day-1) and only slightly overestimated 
with RPE of 1.4%.  
 
GPP estimated in this study could not be validated at other sites 
in the NT due to an unavailability of field data. However, 
analysis of the temporal variation provides plausible patterns, 
with higher values in the wet and lower values in the dry 
seasons. The magnitude of GPP also reduced with decreasing 
rainfall along the the Northern Australian Tropical Transect 
(NATT) (data not shown). 
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Figure 2: Validation of estimated and tower derived GPP (gross 
primary productivity) at Howard Springs flux tower site. GPP 
are shown as monthly average values � SE from 2001 to 2006 
(periods of available data from model and tower data). 
 
Average annual total GPP for Howard Springs from 2001-2005 
(periods of available annual tower GPP) indicated that the 
estimated GPP using fPAR Collection 5 and SILO meteorology 
was 1314 ± 15 g C m-2 year-1( mean ± Standard Error). Months 
with missing GPP (January, February and December), were 
replaced by multiyear averages of the same month. Annual 
mean GPP obtained from this study was ~86 g C or 6% lower 
than flux tower GPP (~1400 g C m-2 year-1) for the same period 
of study (Beringer et al., 2007). GPP estimated from this study 
was closer to the estimates from flux tower than any other 
estimates for the same location. For example, Roderick et al. 
(2001) and Berry and Roderick (unpublished data, Berry 
personal communication) modelled ~1940 and 2219 g C m-2 
year-1, respectively using different methods. Roderick et al. 
(2001) used a LUE model to calculate GPP using fPAR 
(estimated from AVHRR NDVI), but did not incorporate the 
impact of water limitation explicitly, although they note that 
this effect may be important. As a result, GPP was 
overestimated, especially in water limited regions such as in the 
central arid regions and savannas. Similarly, Berry and 
Roderick (unpublished data) also overestimated GPP, despite 
using high temporal resolution MODIS data (250 meter) to 
derive fPAR, and incorporated sunlit and shaded leave scheme 
to estimate GPP for the continent of Australia. Chen et al. 
(2003) provided GPP of 2080 g C m-2 year-1 using biomass 
sampling at this site. Clearly, more field data over large spatial 
extents is needed in northern Australian savannas to validate the 
different GPP models.  
 
The reason for the close agreement between GPP estimated in 
this study and tower estimated values may be due to the 
counteracting effects between the input variables. This study 
overestimated annual PAR and fPAR by 2% and 7%, 
respectively, whereas the daytime VPD scalar was 
underestimated by RPE of 17% (data not shown). As a 
consequence of the counteracting effects, estimated GPP 
matches the tower derived GPP. These results are consistent 
with suggestions made by several researchers (Zhao et al., 
2006; Sims et al., 2006, 2008; Jung et al., 2008) that 
meteorological data can be a major source of error in estimating 
regional GPP. Consequently, new techniques that vary in 
complexity to improve the estimation of GPP at a single flux 
tower site or regional scales have been proposed (Maselli et al., 
2006; Sims et al., 2006, 2008; Coops et al., 2007; Li et al., 
2007; Yuan et al., 2007; Zhang et al., 2007; Jung et al., 2008). 
Yang et al. (2007) for example used a support vector machine 
approach, which combined tower based GPP, land surface 
temperature, EVI, radiation and land cover information to train 

a model to estimate GPP for the conterminous U.S.A. 
Validation of their results using flux tower derived GPP (annual 
total GPP) covering various vegetation types provided an 
overall relative error (annual total tower GPP – annual total 
modelled GPP/annual total tower GPP � 100) of 22% for 
forested ecosystems and 32% for non forested ecosystems such 
as grasslands, savanna and crops. In this study, the relative error 
between modelled and tower derived average annual total GPP 
(2001-2005) is only 6%.  
 
Yuan et al. (2007) also estimated GPP for the USA using a 
simple LUE model with regional specific meteorological data. 
They used minimum temperature (TMIN) and evaporative 
fraction to constrain the maximum LUE (different from this 
study which used TMIN and VPD to down-regulate the maximum 
LUE). Validation of their results at various Ameriflux sites 
showed RPE (mean modelled daily average GPP- mean tower 
GPP/mean tower GPP) ranging between 0 and 44% for forested 
ecosystems and 10 to 41% for grassland and savanna. In this 
study, the RPE for monthly average GPP for one savanna site is 
lower with 6.3%, but may be spatially more variable. 
 
Since the use of regional gridded meteorological data can 
introduce errors of up to 20% between simulated and measured 
GPP (Jung et al., 2007), new techniques were introduced to 
estimate GPP by minimising the use of meteorological data 
(Sims et al., 2006, 2008). Sims et al. (2008) for example, 
estimated GPP based on a simple relationship between EVI, 
land surface temperature (MODIS) and GPP, which improved 
the prediction of GPP for several evergreen needle leaf and 
deciduous broadleaf forests in North America. Although this 
new method improved the correlation coefficient (r2) between 
tower and modelled GPP over these sites (r2 ranging between 
0.69 and 0.94), over the Tonzi Ranch savanna site, the strength 
of the correlation between modelled and tower GPP (16 day 
composites) was only moderate (r2 0.48) compared to a r2 value 
of 0.83 in this study.  
 
Next, we assessed the accuracy of GPP estimated in this study 
by analysing the spatial and temporal patterns of GPP for 
different vegetation types in the NT . The results are described 
in the following section. 
 
4.2  Spatial and temporal patterns of GPP 

Regional GPP was analysed in this study based on a vegetation 
map produced by Fox et al. (2001) for the savanna region of 
northern Australia. GPP was examined spatially across the 
entire savanna region of the NT from the coast to the southern 
savanna boundary (Figure 3). Average GPP for different Broad 
Vegetation Groups (BVG) were calculated and compared with 
each other. The 19 BVG found in the NT were regrouped into 8 
subgroups (Figure 3) based on either structural (height and 
foliage projective cover of the tallest stratum) or plant 
functional types (Fox et al., 2001; Spessa et al., 2005). 
Regrouping was done to simplify the interpretation of the 
results.  
 
Monthly GPP, fPAR, rainfall, radiation, temperature and 
daytime VPD data for each of the 19 BVG classes were 
extracted using the zonal statistics function available in 
ARCGIS software. The vegetation map of Fox et al., (2001) 
was first converted from vector into raster and the cell size was 
resampled to 926.62 m resolution to match the fPAR, GPP and 
climate data.  
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The spatial statistics were used to describe the differences in the 
spatial variation in GPP, fPAR, and climate for each of the 19 
BVG’s found in the savanna region of the NT. Relationships 
between these environmental drivers and GPP were determined 
to find the major control on savanna GPP. Inter-annual 
variability in GPP among different vegetation groups was also 
examined with these datasets.  
 
Monthly GPP extracted for each of the 8 BVG shows that on 
average, closed forest had the largest GPP, followed by open 
forest, woodlands, low woodlands, riparian vegetation, low 
open woodlands, grassland, and Acacia woodland and 
shrublands. The difference in GPP among the 8 classes is 
statistically significant (one- way ANOVA F7,1751 = 343.72, 
p<0.001). GPP across the 8 savanna vegetation classes 
generally increase with canopy cover and/ or vegetation height, 
which is also reflected in rainfall (Table 1). On a sub 
continental scale, closed forest (1114.65 g C m-2 year-1) had 
about 4 and 6 times higher GPP than grassland and Acacia 
(woodlands and shrublands), respectively (Figure 4).

 
Figure 3. Spatial distribution of vegetation types in the savanna 
region of Northern Territory, Australia that were aggregated 
into 8 structural/functional classes (Source: Fox et al., 2001). 
The inter-annual variability in GPP for different vegetation 
types (regrouped 8 BVG) and its dependency on rainfall was 
also examined in this study. The coefficient of variation (CV) 
value of GPP for these eight BVG showed a large inter-annual 
variation for arid ecosystems such as grassland and Acacia 
(>20%), whereas GPP in forest (close and open), woodlands 
and low woodlands were less variable (<10%). Riparian and 
low open woodland had intermediate variation with CV, 
ranging between 13 and 14%. These results support other 
findings that inter annual variability in grasslands’ above net 
primary productivity and net primary productivity is high 
(Knapp and Smith, 2001; Fang et al., 2001; Yang et al., 2008).  
 
The relationship between annual GPP and rainfall for closed 
forest is best described by a polynomial fit (r2 = 0.74 and p = 
0.30), which indicates higher rainfall (> 1500mm) can reduce 
GPP (Table 2). This may be resulted from frequent cloud cover 
in the wet season in this monsoonal environment that may 
inhibit plant growth by decreasing solar radiation. This finding 
is similar to that of Merbold et al. (2008) who found that 
radiation was limiting GPP, and not rainfall, in the inner tropics 

in Africa. In agreement with Merbold, Cias et al. (2008) also 
found that rainfall explained only 6-7% variation in GPP in 
forest ecosystems compared to 42 to 77% in savannas in Africa. 
Yang et al. (2008) also found a slight reduction in global 
grassland ANPP (above ground net primary productivity) under 
humid environments (mean annual rainfall > 1035 mm). 
Meanwhile, the rest of the vegetation classes (Table 2) exhibits 
a strong linear relationship (r2 values ranging between 0.67 and 
0.80) and significant correlation (p<0.05) between GPP and 
rainfall. The slope of the relationship between rainfall and GPP 
is relatively higher (� 0.20) for vegetation that grows in much 
drier environment such as grassland, Acacia, low woodlands 
and low open woodlands compared to woodlands and open 
forest (slope of �0.13). Similar findings were also obtained by 
Cias et al. (2008) where the slope of the GPP versus rainfall 
regression is ~ 50% lower  
for forest than for savanna in Africa. These results show that for 
arid and semi arid regions, the variability in GPP is highly 
dependent on the onset of rainfall.  
 
Table 1. Regrouped vegetation classes and their corresponding 
structural characteristics (height and foliage projective cover), 
broad vegetation groups (BVG) and spatial extent in the 
Northern Territory (sources: Fox et al., 2001; Specht and 
Specht 2002; Australian Natural Resources Atlas 
(http://www.anra.gov.au). 

Regrouped BVG Height 
of

tallest
stratum

Foliage
projective

cover

Annual 
Rainfall (mm) 

� SE 

Closed forest  10-30 m 70-100% 1550 � 103 
Open forest  10-30 m 10-70% 1102 � 89 
Woodlands  10-30 m <10-30% 1049� 82 

Low Woodlands  5-10 m 10-30% 977 � 75 
Low Open 
Woodlands  

5-10 m <10% 766 � 70 
 

Grassland - various 657 � 73 
Acacia woodlands 

& shrublands 
<10 m - 444 � 66 

 
Riparian - - 893 � 89 

Figure 4. Mean annual GPP (gross primary productivity) of 
regrouped 8 structural/functional savanna classes as classified 
by Fox et al. (2001). Error bars represent the Standard Error of 
the mean. CF= closed forest, OF= open forest, W= woodlands, 
LW= low woodlands and LOW= low open woodlands.  
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Table 2. Relationship between annual GPP and rainfall (R) for 
different vegetation types within the savanna region of Northern 
Territory. CF= closed forest, OF= open forest, W= woodlands, 
LW= low woodlands and LOW= low open woodlands. The 
strength and significance of the relationship are shown by R2 
(coefficient of determination) and P values respectively. 
 

5. Conclusion 
 
In this study, an attempt was made to estimate GPP for 
savannas of the NT for a period of 8 years. The latest available 
fPAR data from MODIS Collection 5, meteorological data 
provided by the Department of Natural Resources and Water 
Resources, Queensland and light use efficiency (LUE) 
calculated using flux tower data at Howard Springs were used 
to estimate GPP. This study proves that a simple remote sensing 
based model with reliable local meteorological data can provide 
reasonably good estimates of GPP (only 6% error compared to 
ground data). The estimated GPP was also found to describe the 
spatial and temporal patterns of GPP across the savanna region 
in NT reasonable well. Thus, it can be concluded that 
knowledge of the biophysical processes and analytical tools 
such as remote sensing can be integrated into a complex social 
and economic framework to achieve ecologically sustainable 
development in tropical savannas.  
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