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ABSTRACT: 
 
This paper describes the development of a novel time series modelling and spectrum anomaly-detection method, which takes into 
consideration wide-area seasonal changes. By taking advantage of both the high temporal resolution and the wide swath mode of 
multi-temporal satellite data, such as NOAA/AVHRR, MODIS, and SPOT/vegetation, it is possible to perform high-frequency 
monitoring of wide-area, land cover changes. However, since the multi-temporal satellite data are influenced by clouds and system 
noise, in many cases, they must be processed in order to accurately represent the actual surface conditions. We engineered a discrete 
time-series model using a self-organizing map (SOM) and a hidden Markov Model (HMM) to reduce the influence of clouds in order 
to improve the accuracy of the products. The spectral information of the pixels was first converted to nominal scale values, and the 
influence of clouds was eliminated through a time-series modelling using HMM. Since the anomaly-detection method requires a 
clustering of nominal vectors, dedicated software based on SOM algorithm was also developed. The data for anomaly detection is not 
dependent on the information of neighbouring pixels, and it is possible to detect an anomaly even if there is only one pixel. 
 
 
 

1. INTRODUCTION 

In order to address the issues arising due to the various 
environmental problems that are currently attracting attention, it 
is necessary to devise a method that enables wide-area 
monitoring of fluctuations in vegetation conditions such as 
variations in moisture and temperature and land cover changes.  
Various research projects on the global environment utilize the 
characteristics of the cyclic nature of multi-temporal satellite 
data (Lhermitte et al., 2008). In these research projects, "the n-
day composite imagery"(ex. n=8, 10), which is created by 
selecting the best data in 8 or 10 days for every pixel, is often 
used for characterised seasonal changes. However, the influence 
of clouds and haze remain, even in these ten-day composite data, 
and this complicates the monitoring of phenology with a 10 
days interval (Sawada et al., 2005). Monthly composite data are 
not appropriate to monitor phenology dynamics (Alexandridis 
et al., 2008) because the seasonal changes of vegetation are 
phenomena taking place in a few weeks for most of cases. 
This paper describes a novel method for time series modelling 
and spectrum anomaly detection by using SPOT/vegetation and 
MODIS data. Since this methodology can extract a seasonal 
change model with pixel by pixel, it is useful to monitoring 
land-cover change and ecological disasters such as large-scale 
forest fires. 
 
 

2. METHOD 

In this chapter, the algorithm of discrete time-series model is 
described. This model consists of four modules. (Figure 1) 
 
2.1 Generating of spectral codebook and encoding 

The batch-learning SOM algorithm (Kohonen, 2000 and 
Yamakawa et al., 2005) was used in order to generate a spectral 
codebook which encodes multispectral data. In each pixel, 
"pure components" (endmembers) are extracted throughout the 

data collection period by OPA (Orthogonal Projection Analysis, 
Cuesta Sánchez et al., 1996) for removing influence of cloud, 
haze and other noise. “Pure components” are classified by the 
batch-learning SOM algorithm. Generated SOM is used as a 
codebook in spectral encoding step. In addition, SOM node 
which are assigned as cloud and haze contaminated are masked. 
Then, mutitemporal and multispectral data such as MODIS 
band1~7 data (MOD09A1) and SPOT/vegetation S10 produts 
are encoded by the nearest-neighbour (NN) method. If a pixel 
was “data missing” and contaminated by cloud, this pixel is 
assigned “NULL” code. We set size of SOM to 20 20 
(including “NULL” code, the total number of spectral codes is 
401). 
 
2.2 Time-series modelling by HMM 

The observation data vector and the state vector of (x,y) pixel 
are denoted by o(x,y) and q(x,y), respectively. Both o(x,y) and q(x,y) 

are nominal scale vectors. 
 
 
o(x,y)=(o1

(x,y), o2
(x,y) ,..., oT

(x,y))          (1) 
q(x,y)=(q1

(x,y), q2
(x,y) ,..., qT

(x,y))          (2) 
 
 
where T  = number of scenes 
  (x,y) = image coordinates 
Let assume q(x,y) follows Markov process, we get the 
conditional probability of generating q(x,y) (Rabiner, 1989) 
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where N = total number of states 
 Nc = total number of spectral code. 
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Figure 1. Flow of our discrete time-series model processing 

Parameters ��, a and b are defined by following formulas 
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 “#()” is a function that returns occurrence frequency of 
phenomena in parentheses. 
If parameters �, a and b are known, q(x,y) is obtained by Viterbi 
algorithm. Actually we calculate parameters �, a and b 
iteratively. 
 
2.3 Classification of seasonal change profile 

Since the element of the state vector q(x,y) is a nominal scale 
value, we developed nominal scale vectors (and/or strings data) 
classification method. 
Firstly, we define D(q(x,y)) as a characteristic matrix of the state 
vector q(x,y). The (i,j) element of D(q(x,y)) is one when qj

(x,y)=i 
and otherwise zero. The size of the matrix D(q(x,y)) is N T. For 
example, when q(x,y)=”124” 
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In bioinformatics researches, D is called ‘Position Specific 
Scoring Matrix’ (Gribskov et al., 1987).  
Next, Dcent(Q), the centroid of D, is defined when Q is a set that 
consists of state vectors. 
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where �(x,y) = weight for q(x,y) 
  (x,y) = image coordinates 
For instance 
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Then, we define qcent(Q), the centroid of Q, and consensus 
function which returns consensus sequence. 
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For example, from eq. (7) 
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And we define fij(X) as a function that returns (i,j) element of a 
matrix X for further convenience. 
Similarity of Q and another state vector q’ is defined following 
formula: 
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Consequently, the algorithm of our nominal scale vectors 
classification method is described below: 
 
i)   to initializing weight vectors wIJ 
ii)   to set iteration counter kt to zero 
iii)   to assign q(x,y) to a node by eq. (11) 
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where   L = number of scenes 
(I,J) and (I’,J’)= SOM node coordinates 
q(x,y) belongs to the node (I’,J’) 

iv)   to calculate coefficient h by eq. (12) and eq. (13) 
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where    Kmax = number of maximum iterations 
�init = constant (�init > 0) 

v)   to update weight vector wIJ  
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vi)   kt ← kt + 1 
vii)   to go to step iii) until kt = Kmax 
viii) to determine final clustering vector by eq. (11) 
ix)   to calculate the centroid in each node by eq. (15) 
 
 

� �IJIJ consensus wq �            (15) 
 
 
x)   to write weight vector wIJ and final clustering vector 
(x,y,I’,J’) to file 
 
2.4 Spectral anomaly detection 

In this section, we describe our algorithm about spectral 
anomaly detection. In general, an anomaly detection 
methodology is required to clearly distinguish spectral anomaly 
(i.e. land cover changes) and phenological changes. 
If parameters b, seasonal change profile of reference year q(x,y) 
and clustering results Q are known, we can define observation 
probability of encoded spectrum p� t

(x,y)) in another scene t at 
(x,y) pixel: 
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where  t

(x,y) = encoded spectrum of another scene 
  (x,y) = image coordinates 
 t = scence ID (time) 
 )(t

kla = (k → l) state transition probability at t 
 k = qt-1

(x,y) (the state of reference year at t-1) 
 l = indices of HMM state 
From eq. (16) we get inferential state �t

(x,y) 
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)(t
kla  is obtained by eq.(18) 
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where QIJ =a set consists of state vectors which 
assigned to the SOM node (I,J). 
Then, according to hanon’s theorem (Shanon, 1948), we define 
anomaly score s. 
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For setting threshold value of s, we assume that encoded spectra 
are generated by random process. From eq. (16), generating 
probability prandom is 
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where N = total number of states 
 Nc = total number of spectral code 
From eqs. (19) and (20), we get threshold of anomaly score stht 
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We look upon pixels which is anomaly socre s > stht as 
occurrence of anomaly phenomena. 
 
 

3. RESULTS AND DISCUSSION 

3.1 Water coverage monitoring 

An example of our model processing of MODIS (MOD09A1) 
data is shown in Figure 2. 414 scenes from the early January 
2001 till the end of December 2009 were used. The targeted 
area is Amazon River basin (10N~20S, 80W~40W, Figure 2). 
Figure 2a, 2b and 2c are raw composite, time-series modelling 
results (by HMM) and cluster centroid, respectively. As for the 
processed data, almost all the influences of cloud and noises 
disappear. 23 states were obtained and “state 23” is assigned to 
water spectra which is clearly distinguished from other states in 
the spectral shape (Figure 3). We obtained the water coverage 
period map by occurrence frequency of state 23 (Figure 4). 
 
3.2 Burned area detection 

In order to detect of burned area with 10 days interval, 
SPOT/vegetation S10 products were processed. The targeted 
area is far-east Russia (50N~54N, 127E~133E, Figure 5). The 
data collection period as reference year is from Apr. 1999 to 
Mar. 2000 (one year, 36scenes). We set SOM node size to 10
10 for clustering of seasonal change profile. 
As results, 15 states were obtained. Figure 6 shows 4bands 
spectra of each state. There are mainly four categories 
“vegetation”, “soil”, “snow” and “water” from visual 
interpretation (Table 1). 
The data collection period for anomaly detection is from Jun. to 
Aug. 2000 (12scenes). Original data (S10 product), inferred 
state and anomaly score are shown in Figure 7. For comparison, 

 

     
     (a)                (b)               (c) 

 
Figure 2. Examples of our discrete time-series processed MOD09A1 data (Jan. 12 2009) 

(a)  original MODIS data (b) HMM processed image (c) cluster centroid image 
 

reflectance 

      

Water Coverage Period

          band number 
 
     Figure 3.  Spectra of states             Figure 4.  Water coverage period in 2008 
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same area of the GBA2000 (Global Burned Area, Grégoire et 
al., 2006) product is also shown in Figure 7. Our method was 
found effective to identify burned area with pixel by pixel. 
 
 
 
 

 
Figure 5. Targeted area of burned area detection 
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Figure 6.  Spectra of each state 

(red: averaged spectra) 
 

Table 1. States and Categories
category state ID 

Vegetation 5,6,7,9,10 
Soil 1,2,3,4,8 
Snow 11,12,13,14,15 
Water 1 
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Figure 7.  Identification of burned area 
 
3.3 Forest development area detection 

In order to identify deforestation trend with 10 days interval, 
10-days composite MODIS data were processed. MODIS data 
were obtained from WebMODIS system (Takeuchi et al., 2005).  
The result shows to identify deforestation trend with pixel by 
pixel (Figure 8). ASTER VNIR images are also shown in 
Figure 9 for comparison. 
 

Dec 2006 Dec 2007

Direction of development

Date

Direction and speed within a 
block (16km 16km)

 
 

Figure 8.  Deforestation direction and trend. 
 (13.417N, 106.112E) 
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Figure 9. ASTER VNIR image (13.417N, 106.112E, 9km

9km) 
 
 

4. CONCLUSIONS 

We developed a discrete time-series model using a self-
organizing map (SOM) and a hidden Markov Model (HMM) to 
reduce the influence of clouds in order to improve the accuracy 
of the products. Our method is able to clearly distinguish 
spectral anomaly and phenological changes. Our method is 
found effective to identify land cover changes (i.e. forest fire 
and deforestation) with pixel by pixel, but further study will be 
required to clarify its limitation on areas of land cover changes. 
A small land cover changes will not be identified. 
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