
SATELLITE IMAGERY CLASSIFICATION WITH LIDAR DATA 

M. C. Alonso *, J. A. Malpica

School of Geodesy and Cartography, University of Alcalá, Ap. Correos 20, 28871 Alcalá de Henares, Madrid, Spain – 
(mconcepcion.alonso, josea.malpica)@uah.es 

Commission VIII, WG 8 

KEY WORDS: LIDAR, Satellite Imagery, Classification, Support Vector Machine, Feature Extraction, SPOT5 

ABSTRACT:

This paper shows the potential of LIDAR for extracting buildings and other objects from medium resolution satellite imagery. To
that end, the study integrated multispectral and LIDAR elevation data in a single imagery file and then classified it using the Support 
Vector Machine. To determine the method’s potential, the study used a SPOT5 satellite from an area situated southeast of Madrid,
Spain. First, with the four multispectral bands and the panchromatic band of the SPOT5 image, a multispectral four bands 
pansharpening was performed with Principal Component Analysis. Once integrated, these four pansharpening images and LIDAR 
data, were treated as independent multiple band imagery to perform the classification. 
Using five classes, a sample of ground truth pixels was taken for training and testing. The study used 10% of the ground truth for
training and the entire ground truth for testing the robustness of the classification with and without LIDAR data. To assess and
compare the classification results numerically, confusion matrices and Receiver Operating Characteristic (ROC) were calculated for
the five classes, for both classifications, with and without LIDAR. 
Generally, when using only multispectral imagery, some confusion among classes occurs; for instance, buildings with flat asphalt
roofs represent a separate problem in classification, since they are extremely difficult to discern from roads. This is mostly solved 
when integrating LIDAR data to the multispectral imagery. In general, when adding LIDAR, the classification results show a more
realistic and homogeneous distribution of geographic features than those obtained when using multispectral SPOT5 alone. 

                                                                
*  Corresponding author. 

1. INTRODUCTION

The automatic extraction of buildings and vegetation in urban 
areas can be used when updating urban inventories to monitor 
post-disaster emergencies and to assess building or vegetation 
changes. Regardless of the hazard’s origin, post-disaster 
emergency agencies need to assess the geographic extent of the 
damage caused by the disaster and prioritize areas that need 
urgent assistance. Remote sensing techniques can perform some 
damage assessment tasks; the data obtained from remote 
sensing can be integrated into a Geographic Information System 
and consequently enhance the effectiveness and efficiency of 
emergency management. 

Currently, operators manually extract cartographic features, 
such as buildings, roads, and trees, by visual interpretation of 
satellite imagery and aerial photography. Semi-automatic 
algorithms to assist cartographic technicians would improve the 
process. Common classification algorithms for low-resolution 
satellite imagery are too limited to deal with complex high-
resolution satellite data and require new algorithms. Several 
authors have studied classification methods for satellite images 
(Bernardini et al., 2008; Alonso et al., 2007). 

The combination of LIDAR (Light Detection and Ranging) 
with multispectral imagery can significantly improve 
classification, both in terms of accuracy and automation. 
LIDAR provides the altitude necessary for discriminating 
between certain classes but is blind to the type of object it 
measures, while the multispectral data provides intensity and 

facilitates the identification of the type of object. In this paper, 
we show the benefits of synergistically merging sensors for 
mapping buildings. The automatic extraction of buildings and 
vegetation in urban areas can aid in the important application of 
updating urban inventories to monitor urban vegetation and to 
assess buildings or vegetation changes. 

Several authors have combined multispectral and LIDAR data. 
Syed et al. (2005) consider object-oriented classification as 
superior to maximum likelihood in terms of reducing “salt and 
pepper.” Alia et al. (2008) describe an automated procedure for 
identifying forest species at the tree level from high-resolution 
imagery and LIDAR data. The results show an improvement in 
the ability to discriminate between tree classes. Zeng et al. 
(2002) showed an improvement in the classification of Ikonos 
imagery when integrated with LIDAR. This integration of 
LIDAR with multispectral data has proven beneficial for: the 
detection of buildings (Rottensteiner et al., 2003); the 
facilitation of accurate delineation of impervious surfaces 
(Hung and Germaine, 2008); change detection and quality 
control in urban areas (Walter, 2005); the extraction of roads 
(Hu et al., 2004); and the classification of coastal areas (Lee 
and Shan, 2003). The integration of multispectral imagery and 
multi-return LIDAR for estimating attributes of trees was 
reported in Collins et al. (2004). Our work combines LIDAR 
elevation data and SPOT5 multispectral data for the 
classification of urban areas. We used the Support Vector 
Machine (SVM), and our results confirm those of the above 
works by providing additional data and classification algorithm. 
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2. MATERIALS AND STUDY AREA 

SPOT5 satellite imagery has been used to determine the 
method’s potential. Launched in 2002, this satellite captures 
panchromatic images with a 2.5 m resolution and multispectral 
images with a 10 m resolution  (for the bands R, G, and NIR), 
and 20 m (for the MIR band). This experiment captured the 
scene at 11:20 a.m. on 12 August 2006; it represents an urban 
area southeast of Madrid, Spain, on mostly flat terrain. Figure 1 
(a) shows the study area in a false color SPOT image generated 
with bands 1, 2, and 3 for the RGB monitor channels. 

                                                  (a) 

                                                  (b) 
Figure 1.  False color SPOT image (© SPOT Image Copyright 

2004) (a) and LIDAR elevation data (b) 

An aerial flight for the same area described for the SPOT5 
scene took place also in August 2006 for the acquisition of 
LIDAR data. We obtained the density of the LIDAR with an 
average of three points per square meter, subtracted the Digital 
Terrain Model from the Digital Surface Model, and created the 
elevation model shown in Figure 1 (b). As mentioned earlier, 
this shows the LIDAR elevation image of the same area as 
Figure 1 (a). 

The algorithm used for the classification was the Support 
Vector Machine (SVM); a detailed description of this algorithm 
can be found in Vapmik (1995). The idea for SVM initially 
appeared in an article by Boser et al. (1992), in which they 
applied it to optical character recognition problems. The authors 
demonstrated the superior generalization of SVM as compared 
with other learning algorithms. SVM maximizes the margin 
between the training patterns and the decision boundary. 

Several authors have applied SVM to images; for instance, 
Azimi-Sadjadi and Zekavat (2000) used SVM to classify 10 
different cloud and cloudless areas. The SVM has been 
compared to other classification methods for remote sensing 
imagery such as Neural Networks, Nearest Neighbor, 
Maximum Likelihood and Decision Tree classifiers, surpassing 
them all in robustness and accuracy (Huang et al., 2002; Foody 

and Mathur, 2004; Melgani and Bruzzone, 2004; Theodoridis 
and Koutroumbas, 2003; Perkins et al., 2001). These works led 
us to apply SVM rather than other methods for classification. 

3. CLASSIFICATION OF SPOT5 WITH LIDAR 

With the four multispectral bands and the panchromatic image, 
we carried out a multispectral four bands pansharpening 
performed with PCA (Figure 2). 

The SPOT5 multispectral pansharpening images and the 
LIDAR data are integrated and treated as independent multiple 
band imagery to carry out the classification. 

Figure 2.  Flow chart for the classification 

This study tested several provisional numbers of classes and 
training samples for the SVM classifier and performed quality 
assessment following the methodology described in Alonso et 
al. (2008). Eventually, we established an arrangement of five 
classes: high vegetation (trees, A), low vegetation (shrubs and 
lawns, B), natural grounds (C), artificial grounds (D), and 
buildings (E). With the help of aerial photos and ground visits, 
we selected samples for training and evaluating the classifier 
from the SPOT–LIDAR merged data set. The study area 
corresponded to the city of Alcalá de Henares where the authors 
reside and allowed for many visits and opportunities for 
gathering samples. Finally, a ground truth of 11020 pixels was 
selected. Table 1 and Figure 3 show the distribution of the 
ground truth. 

For training we took a 10% random subset of the ground truth 
sample. However, we carried out the test with the whole ground 
truth.

Ground truth sample 
Pixels Percent 

 Trees (A) 2106 19,11 
 Shrubs and lawns (B) 982 8,91 
 Natural grounds (C) 2310 20,96 
 Artificial grounds (D) 2284 20,73 
 Buildings. (E) 3338 30,29 

Total 11020 100 
Table 1.  Class Distribution Summary 

R,   G,  NIR, MIR 
10, 10,   10,   20 m 

Input

R, G, NIR, MIR, 
LIDAR, 2.5 m

Resampling and 
Registration 

      Pansharpening

R, G, NIR, MIR 
2.5 m

   Training sample 

Supervised Classification by Support Vector Machine 

    Test sample 

Classified image, 
accuracy 80.34%

Classified image, 
accuracy 96.30%

Output 

Panchromatic
2.5 m LIDAR 1 m 
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Figure 3.  Distribution of the ground truth 

4. RESULTS AND DISCUSSION 

Figure 4 (a) shows the results for the classification of the 
multispectral image plus LIDAR data, while Figure 4 (b) shows 
the classification without LIDAR. A simple visual analysis of 
both images reveals the superior delineation of cartographic 
features in Figure 4 (a) over those of Figure 4 (b). 

                                                    (a) 

                                                    (b) 

Figure 4.  Results of the SVM classifications with LIDAR (a) 
and without LIDAR (b) 

Figures 5 (a), 6 (a), and 7 (a) show three aerial images 
representing three details from Figure 4 (a) and Figure 4 (b), 
represented with rectangles in Figure 4. Figures 5 (b), 6 (b), and 
7 (b) show the classifications of the three details using 
multispectral bands plus LIDAR. Figures 5 (c), 6 (c), and 7 (c) 
represent the classifications of multispectral bands without 
adding LIDAR. 

The left upper corner of Figure 5 (a) shows a motorway 
correctly detected in Figure 5 (b) but not in Figure 5 (c), where 

it has been confused with the buildings class. Obviously, the 
LIDAR data has discriminated the motorway as ground by the 
SVM when classifying with multispectral imagery adding 
LIDAR. On the contrary, in the central part of Figure 5 (a) we 
can see several buildings detected in Figure 5 (b) while in 
Figure 5 (c), these same buildings have been wrongly taken for 
artificial ground. Furthermore, the buildings detected in Figure 
5 (c) are fuzzier than those in Figure 5 (b); again, the LIDAR 
data has allowed sharper discrimination by considering height. 
Visits to the terrain prove that the classification in Figure 5 (b) 
distinguishes the trees class from the shrubs and lawn class 
better than the classification in Figure 5 (c). For instance, note 
the red diagonal of Figure 5 (c) and the cross form at the middle 
left side of the image to the middle upper side. See Figure 5 (b) 
and the roundabout at the upper right corner. Figure 5 (b) 
correctly detects shrubs and lawn (with two trees taken also 
correctly by two of the red points), while 5 (c) has wrongly 
mistaken the objects as mostly trees. 

            (a)                            (b)                              (c) 

Figure 5.  Aerial image for reference (a), results of SVM 
classifications with LIDAR (b), and without LIDAR (c) 

The upper part of Figure 6 (a) shows several semi-attached 
buildings correctly detected in Figure 6 (b), while they are 
mistaken as a unique building in Figure 6 (c). Also, Figure 6 (b) 
has correctly classified the parking lots as artificial ground 
(blue color), while Figure 6 (c) has mistaken them as buildings. 

            (a)                            (b)                              (c) 

Figure 6.  Aerial image for reference (a), results of SVM 
classifications with LIDAR (b), and without LIDAR (c) 

Figure 7 (a) reveals a bullfighting arena (the round object 
toward the top of the figure). Figure 7 (b) correctly classifies it 
as a building, while it has been mistaken as artificial ground in 
Figure 7 (c). The surroundings of the bullfighting arena 
corresponding to parking lots have been detected correctly as 
artificial ground in Figure 7 (b) and wrongly classified as 
buildings in Figure 7 (c). 
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            (a)                            (b)                              (c) 

Figure 7.  Aerial image for reference (a), results of SVM 
classifications with LIDAR (b), and without LIDAR (c) 

To assess and compare the classification results numerically, we 
calculated confusion matrices for both classifications, with and 
without LIDAR. Table 2 shows the confusion matrix for the 
classification of Figure 4 (a), while Table 3 shows the confusion 
matrix corresponding to Figure 4 (b). 

    Ground Truth 
Class     (Pixels) A B C D E Total 

 Trees (A) 2091 0 0 15 0 2106 
 Shrubs (B) 0 958 0 6 0 964 
 Natur. g(C) 0 3 2310 39 0 2352 
 Artif. g (D) 0 21 0 2115 109 2245 
 Build. (E) 15 0 0 109 3229 3353 

Total 2106 982 2310 2284 3338 11020

Table 2.  Confusion matrix for classification with the LIDAR 
band.

Overall Accuracy = (10703/11020) ~ 97.1234% and Kappa 
Coefficient = 0.9630 

    Ground Truth 
Class     (Pixels) A B C D E Total 

 Trees (A) 2010 78 0 23 2 2113 
 Shrubs (B) 79 878 0 2 0 959 
 Natur. g(C) 17 1 2225 104 166 2513 
 Artif. g (D) 0 25 0 1057 486 1568 
 Build. (E) 0 0 85 1098 2684 3867 

Total 2106 982 2310 2284 3338 11020

Table 3.  Confusion matrix for classification without LIDAR 

Overall Accuracy = (8854/11020) ~ 80.3448% and Kappa 
Coefficient =  0.7454 

The overall accuracy and the Kappa coefficients are 97.12% 
and 0.96 (see Table 2) for the SVM classification with LIDAR 
data, shown in Figure 4 (a), while overall accuracy reaches 
80.34% and 0.7454 (see Table 3) for the SVM classification 
without LIDAR data, as shown in Figure 4 (b). Therefore, a 
gain of 16.77% is obtained in merging the LIDAR data with the 
multispectral bands for this data set. The confusion matrices 
allow us to examine the differences of the classifications in 
detail. For all the classes considered, the omission and 
commission errors are improved to some degree by the 
integration of LIDAR (see Table 4). 

With LIDAR Without LIDAR 
Per cent 

OmissionCommission Omission Commission
 Trees (A) 0.71 0.71 4.56 4.87 
 Shrubs (B) 2.44 0.62 10.59 8.45 
 Natur.(C) 0.00 1.79 3.68 11.46 
 Artif. (D) 7.40 5.79 53.72 32.59 
 Build. (E) 3.27 3.70 19.59 30.59 

Table 4.  Classification errors for with and without LIDAR 

Table 4 shows the buildings class with an omission error of 
19.59% and a commission error of 30.59% without LIDAR, 
whereas the addition of LIDAR reduces these errors to 3.27% 
and 3.70%, respectively. This is a consequence of introducing 
elevation data, which allows building extraction to take place 
more accurately, as seen in the comparison between the 
classifications presented in Figure 4 (a and b). To a lesser 
degree than with the buildings, we can observe an improvement 
in the classification of vegetated areas between high vegetation 
(trees) and low vegetation (lawns, grass, or shrubs). 

Spectral signatures of some urban materials are similar in 
composition. For instance, the roofs of some buildings and 
roads and parking lots are made of asphalt, therefore the 
multispectral classifier (without LIDAR) assigns them to the 
same class; however, when we consider LIDAR elevation data, 
the classifier discriminates between buildings and artificial 
grounds, and these errors disappear. 

As a measure of performance of supervised classification, we 
use the receiver operating characteristic (ROC) curve (see 
Figure 8). See also Metz (1978), for additional information. 

Many applications use the area under the ROC curve (AUROC) 
as a measure of accuracy (Hanley and McNeil, 1982). For the 
five classes considered in this work, the AUROCs are bigger 
using LIDAR than without it (Table 5). 

LIDAR
Area under the ROC curve

With Without
 Trees (A) 0.97784 0.94885
 Shrubs and lawns (B) 0.99475 0.99405
 Natural grounds (C) 0.93395 0.90910
 Artificial grounds (D) 0.82263 0.71577
 Buildings. (E) 0.90492 0.80629

Table 5.  Area under the ROC curve for each class with LIDAR 
and without LIDAR classification 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Volume XXXVIII, Part 8, Kyoto Japan 2010

733



Figure 8.  ROC curves in the SVM classifications with (straight 
line) and without (dotted line) LIDAR. TP and FP are true 

positive and false positive 

5. CONCLUSIONS

This study investigated the impact of LIDAR data on the 
classification of multispectral SPOT5 imagery using SVM over 
an urban area near Madrid, Spain. A visual evaluation shows an 
improvement of the classification when using LIDAR data. 
Two numerical methods—confusion matrices and ROC 
curves—complemented this evaluation of the results. After 
defining ground truth samples, we used 10% randomly for 
training for both classifications (with and without LIDAR), 
while the evaluation was made with the total ground truth 
samples. We obtained a gain of 16.78% in overall accuracy for 
the imagery in this experiment. Furthermore, ROC curves for 
the classification with LIDAR reveal a superior performance for 
all classes compared to the classifications without it. 

The SVM classifier with LIDAR shows a more realistic and 
homogeneous distribution of geographic features than that 
obtained without LIDAR. This is specifically so for buildings 
and artificial ground, as shown by the ROC curves. 
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