
CHANGE DETECTION UNDER UNCERTAINTY: MODELING THE SPATIAL
VARIATION OF ERRORS

Sotirios Koukoulas

Dept. of Geography. Spatial Analysis, GIS and Remote Sensing Lab.
University of the Aegean
Mytilene 81100, Greece
skouk@geo.aegean.gr

www.aegean.gr/geography

Commission VIII/8

KEY WORDS: Land Cover, Change Detection, Error, Modelling, Spatial, Statistics, GIS

ABSTRACT:

This research focuses on modeling the spatial variation of errors in a land cover map and in the detection of changes when local
uncertainties are identified. The motivation for this research stems from the fact that although a plethora of classification accuracy
indices exists, most of them are global measures, such as the percentage correct and kappa index which are being the dominant measures
so far. There is certainly a need to know the spatial distribution of errors in order to take informed decisions for further research and
better interpretation of the results. The methodology that was followed, initially focused to land cover mapping and change detection
mapping, for land use changes that have taken place since 1975. The latter was achieved by devising a simple and operational rule-based
approach to map land cover changes, based on the classification of Landsat imagery (MSS for 1975 and TM5 for 1990, 1999, 2007) and
the conceptual analysis of the information regarding change detection. The use of ancillary GIS data such as a Digital Elevation Model,
existing thematic maps and the knowledge of the island’s vegetation dynamics, formed the basis for setting the rules (e.g. impossible
changes, valid transitions) for the post-processing of the classified images that led to a more accurate assessment and mapping of land
cover changes.Consequently, a model-based approach to estimate local uncertainties is proposed by using independent ground truth
samples and GAM models to estimate the probability of error occurrence in the study area. Change detection maps were subsequently
cross-tabulated with error maps in order to provide information on the reliability of the change estimates.
The results can be used in various ways. Firstly, as an iterative classification process corrected by independent ground truth samples,
taken at the areas with low accuracy. Secondly, the analyst can proceed to use the enhanced change detection maps, making informed
decisions and incorporating uncertainties in future modeling.

1 INTRODUCTION

Land cover map accuracy measures are global measures and at
best they provide information at class level. Quite a few indices
for accuracy assessment have been developed in the past with per-
centage correct and kappa index being the dominant measures so
far. The importance of accuracy assessment for each land cate-
gory has long being recognized and each of these indices have
been extended to report accuracies for each class.

Error matrices do offer a lot of information for the classification
accuracy reporting both errors of omission and errors of com-
mission for each class. However not all of this information is
passed to the indices of accuracy. In fact almost all of the indices
proposed and used are ignoring errors of commission. Yet these
errors are as important as the omission errors. Koukoulas and
Blackburn (2001) have offered an overall index (CSI), group and
individual class indices that do take into account both types of
errors (omissions and commissions). However, this is a problem
of spatial distribution of errors. In order to tackle efficiently the
estimation of uncertainty in a land cover map we need to know
the probability of each pixel being correctly classified based on
independent ground truth samples.

Not knowing the spatial distribution of errors of commission and
errors of omission is a major issue for reporting land cover statis-
tics and furthermore land cover change estimates. This is also
important for the estimation of error propagation in models that
use land cover maps as inputs, e.g. erosion models.

Certainly,there is a need for local measures of uncertainty in order
to have a clearer picture of what we are mapping. Local indices of
map quality based on the classification probabilities for each class
were produced in the past by Kyriakidis and Dungan (2001) using
indicator kriging modeling. Other interesting approaches in mod-
eling errors for remotely sensed data can be found in Wang and
Howarth (1993) who studied the uncertainties involved in class
modeling (training) and boundary generation (boundary pixel al-
location), de Bruin (2000) who worked on the prediction of the
areal extent of land-cover types using Geostatistics, Crosetto et
al. (2001) who worked on uncertainty propagation on remotely
sensed data and van Oort (2007) where his approach provides
new insights on the change detection error matrix. This study is
using a model-based approach to local uncertainty estimation by
using independent ground truth samples and GAM models to es-
timate the probability of a pixel being correctly classified and the
spatial variation of errors on the map.

2 METHODOLOGY

The methods used in this project are detailed below. First, the
study area is described as well as the setup of the data for the spa-
tial analysis followed. Consequently, the theoretical background
of non parametric binary regression and Generalized Additive
Models are described and applied in order to test the spatial vari-
ation of errors in each classified map. An approach for change
detection under uncertainty is also described.
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2.1 Study area and data description

The study area is the island of Lesvos in Greece, which over
the last three decades has experienced significant and complex
land cover/use changes despite being far from the mainland and
without intense tourist growth (Gatsis et al., 2006; Giourga et al.,
2008).

Four satellite images, a Landsat MSS scene (July 1975, 4 bands,
nominal pixel size 59m), and three Landsat 5 TM scenes (June
1990, July 1999, August 2007, 7 bands, nominal pixel size: 30m),
were employed for identifying land cover and land cover changes
in the island of Lesvos. Additional ground truth data were derived
from orthorectified aerial photographs at a scale of 1:40.000, dat-
ing 1960,1995, Quickbird imagery 2001, Google Earth data for
2007 and GPS field data for 2001 and 2007.

2.2 Land cover mapping and change detection

Geometric correction of the images was performed using 2nd or-
der polynomials and nearest-neighbor resampling with a RMS
smaller than one pixel. The four scenes were referenced to a
common projection (EGSA 87). The four images were classified
using the Maximum likelihood classification rule with randomly
selected samples for each land cover class. Initially eight (8) land
cover classes were used; bare land, garrigue (phryganic vege-
tation including natural pastures), maquis vegetation (open and
dense), pine forest, broadleaved forest, olive cultivations, urban
areas (including quarries) and water bodies. Some types of land
cover such as specific arable crops (other crops), marsh and salt-
works were excluded from the classification process due to their
high spectral variability and confusion with other classes. These
classes were added later, during the rule-based approach. The
samples for the MSS image classification (1975) were collected
from orthophotos, dating from 1960 as there was no availability
of aerial photographs nearer 1975. The samples were distributed
randomly within the land cover zones of a (Forestry Service) veg-
etation map dating from 1960. This map was a useful guide es-
pecially in areas where identification of land cover types was dif-
ficult (e.g. between maquis and olive trees). Manual editing of
the samples ensured the match of sampled land types between the
orthophotos and the MSS image. The samples for the 1990 Land-
sat TM5 image were collected from the 1995 aerial photographs,
for the 1999 Landsat TM5 were collected from the Quickbird
imagery (2001) and land surveys using GPS (year 2003). De-
spite the thorough sampling framework, the produced thematic
maps of land cover/use alone were not suitable for change detec-
tion. For the year 1975, the poor spatial and spectral resolution of
Landsat MSS produced classifications of low accuracies (58%).
In the early years of remote sensing these accuracies were con-
sidered adequate. Currently, the challenge is to improve on this
(using MSS imagery) and subsequently use the results for change
detection purposes. The significance of the latter is obvious if
we consider the large existing archive of MSS data (mostly avail-
able for free) that could provide useful insights to the status of
land cover 30-35 years ago. A rule-based approach was used,
combined with manual editing which allowed us to produce clas-
sified images with accuracies of 88.5% for the 1975 image. The
rule-based enhancement did improve accuracies of Landsat TM
classified products, which were also low. The lower accuracies
of Landsat TM are due to the higher spectral confusion among
three classes, namely olive trees, maquis and garrigue that cover
a large part of the island (approximately 75%). Following the
same approach (as for MSS) for Landsat TM classified images
the final classification reached 93% accuracy for the 1990 image,
95.6% accuracy for the 1999 image and 90.3% accuracy for the
2007 image.

Rule-based enhancement of the classified images that was men-
tioned above, involved corrections with regard to topography of
the area (e.g. Olive cultivations found above 350m for a cer-
tain zone of the study area were reclassified to maquis vegeta-
tion (spectral and texture similar class), correction of urban areas
where they we confused with bare land based on ancillary GIS
data and identification of false changes. The latter involved iden-
tification of erroneous changes using field and ecological knowl-
edge (e.g. changes that are impossible to happen in the time span
studied) and correction of the classified images focusing on the
areas where erroneous changes occurred. The latter was imple-
mented using all four images and looking for patterns of the type
’Pine forest-other-Pine forest-Pine forest’ or obvious variability
in the changes, such as ’Pine forest-Olives-Pine Forest-Olives’.
More details on the classification procedure and parts of rule
based approach can be found in Gatsis et al. (2006, 2007); Gatsis
and Koukoulas (2009). Note that the papers above did not use all
four images simultaneously - this was part of the current work.

2.3 Spatial variation of the errors

Given an initial set of sample locations the objective is to derive
accuracy measures on the land cover maps produced by classifi-
cation (or otherwise).

Although the initial set was chosen randomly, each subset of cor-
rect or erroneously classified locations (pixels) might exhibit a
particular pattern making decisions based on the corresponding
land cover map problematic. More importantly land cover change
maps would be non-uniformly affected making interpretation and
conclusions unreliable. If the errors are randomly distributed and
their total percentage is low then we can accept a land cover map
for further processing, otherwise we should map the pattern of
errors and take it into account into further processing or into de-
signing new sampling layouts for classification improvement.

In order to model the local variation of error in a land cover map
given only the position as explanatory variable we assume that
we have a set of locations Xi ∈ L, here each pixel is a location
and L is our study area. The objective is to model the probability
of each location (pixel) to be correctly classified. A sample of
N such locations Zi with i=1...N, is selected randomly from the
land cover map and tested against ground truth data derived from
the interpretation of aerial orthophotographs and fieldwork for all
the years (fieldwork refers only to the last two dates 1999 and
2007). A number n1 from these samples was labeled as correct
(1) and n0 = N − n1 were labeled as errors (0).

In order to map the pattern of errors we can use first Kernel den-
sity estimation for each group of locations and then we evaluate
their ratio. Each step is described in the following subsections.

2.3.1 Kernel density estimation: Kernel estimation was orig-
inally developed to obtain a smooth histogram from an observed
sample and it has since been adopted to estimate intensity of an
observed pattern using a function known as kernel (Silverman,
1986; Bailey and Gatrell, 1995). The kernel function can be con-
ceptualized as a moving function usually in the shape of a circle
or square that is applied over a fine grid of locations in the area of
interest and visits each point in this fine grid. Distances to each
observed event that lie within the region of influence (e.g. within
a radius r for a circle) are measured and contribute to the inten-
sity estimate of the origin according to how close they are to the
origin. Again here the problem of choosing the right radius (if it
is a circle) exists, as a very large r will obscure local features and
make the area look flat and a very small r will result in a spiky sur-
face. As a solution methods have been proposed to adjust (and to
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optimize) the radius of the kernel function for regions with differ-
ent density in order to improve the intensity estimate (see Bailey
and Gatrell, 1995 for more details of the kernel function). A two
dimensional kernel density estimate at location Z = (x0, y0) is
defined as:

λ̃(Z0) =
1

Nrxry

N∑
i=1

{
kern

(
x0 − xi
rx

)
kern

(
y0 − yi
ry

)}
(1)

where rx and ry are the bandwidths in x and y directions. Usu-
ally we use symmetric kernels and the bandwidth is equal to r
for both directions. kern() is known as kernel and the researcher
can choose from a list of symmetrical to the origin bivariate prob-
ability density function. For this study the bivariate normal prob-
ability density function was used as kernel, with r equal to 3km,
estimating the function for a grid of locations S = (x, y) and
creating the overall intensity surface.

Many researchers use the terms density and intensity interchange-
ably because these two functions differ only by a constant of pro-
portionality. Density function in our case defines the probability
of observing an erroneously classified pixel at a certain location,
while the intensity function defines the number of errors per unit
areas at a certain location. Dividing the intensity λ(Z) by its in-
tegral over the study area L, produces the density function f(Z)
(Diggle and Rowlingson, 1994; Waller and Gotway, 2004).

2.3.2 Density Ratio and Non-parametric Binary Regression:
Suppose that we have a number of correct locations and their
locations are an independent random sample from the distribu-
tion on L with probability density proportional to their intensity
λ1(Z). Similarly, we can describe erroneously classified pix-
els with intensity λ0(Z). Our interest is to estimate the spa-
tial variation of errors in the land cover map. We can use the
spatial odds function d(Z) = λ1(Z)/λ0(Z), something analo-
gous with what Kelsall and Diggle (1995a,b), proposed in a spa-
tial epidemiology context. The spatial odds function is constant,
d(Z) = n1

n0
= d0, under the null hypothesis of equal distribution.

We could also work with the ratio of densities as an estimation of
d(Z) (Bithell, 1990), or the logarithm of this ratio, with the null
hypothesis that the function of logarithm of the ratio of the den-
sities, rd(Z) = log(f1(Z)/f0(Z)), equals to 0.

A test statistic T =
∫
L
(d(Z) − d0)2dZ has been proposed by

Kelsall and Diggle (1995a) to test the null hypothesis of equal
distribution of errors and non-errors, using Monte carlo simula-
tions as a test of significance (Kelsall and Diggle, 1995b). In
brief, the test is based on computing k values of the test statistic
T by randomly re-labeling errors and non-errors, keeping their
numbers n0 and n1 fixed. The significance (p-value) can then be
estimated by the rank of T0 (computed for the observed data) in
the series of the k T values.

Conditional on the whole set of locations, Yi are independent
Bernoulli trials (Diggle and Rowlingson, 1994) with:

P (Yi = 1|Zi) = π(Zi) =
λ1(Zi)

λ1(Zi) + λ0(Zi)
(2)

We can therefore estimate the probability of error in any location
following the above and estimating λ1(Z) and λ0(Z) as kernel
densities.

A cross-validation method for choosing the bandwidth was de-
vised by Kelsall and Diggle (1995a,b) using Taylor series expan-
sion.Bithell (1990) and Kelsall and Diggle (1995a,b) suggested

that the same bandwidth should be chosen for both kernels in or-
der to minimize any error exaggeration at the tails when taking
the ratio of the kernels.

2.3.3 Generalized Additive Modeling: When we need to ex-
amine spatial variation of errors taking into account covariates,
then the use of Generalized Additive Models (GAM) is appro-
priate (Hastie and Tibshirani, 1990; Diggle, 2006; Elliot et al.,
2006).

If there were other factors to include in the modeling an additive
logistic model with the following form would be needed:

logit(π(Z)) = log(
π(Z)

1− π(Z) = β0 +

N∑
i=1

βi ∗ gi(Z) + S(Z)

(3)

where π(Z) represents the probability for a location to be cor-
rect (non-error) given its location Z, gi(Z) represents the covari-
ates (if any) which take into account known factors that influence
the status of the location, S(Z) is the smooth factor representing
the spatial variation of non-errors (or errors). The model imple-
mented here does not use any covariates (so only the intercept and
the S(Z) terms are needed in the above equation). In particular,
according to Diggle (2006), exp(S(Z) denotes the residual odds
ratio of the correct/error status controlling for the rest known risk
factors. Kelsall and Diggle (1998) used a Kernel estimator as the
S(Z) function with an adjusted bandwidth according to a cross-
validation criterion. However, in this case S(Z) was chosen to
be a thin plate spline function (Wood, 2006) as it was easier to
implement. This is not expected to have a significant effect in the
model as the choice of smooth function generally does not change
dramatically the results (except for cases where there are specific
reasons to choose a particular smooth function) (Diggle, 2003).
A final point that should be made here is that the null hypothe-
sis is that the smooth factor S(Z) is constant rather than π(Z)
(Diggle, 2006).

2.4 Change detection under uncertainty

Modeling results will provide us with information related to the
distribution of errors. If the errors are equally distributed to the
study area and their total percentage is not too high (e.g. within
10%) then we can proceed to post-classification change detection
without any further processing. But if we have proof that there
is spatial variation in the errors (e.g. factor S(Z) is significant),
then we need to take this into account.

One way of proceeding would be to identify the areas where the
probability of errors are high and try to correct them either with
extra samples and reclassification or with some auxiliary data. If
this is not possible then we could proceed to change detection
attaching a degree of confidence in our estimates of change. Cur-
rently this is a matter of ongoing research and here a visualization
of the local variation of errors is presented (see figure 6). In ad-
dition, a box-plot of land cover changes against the variation of
non-errors/errors is also presented in the results in order to eval-
uate the performance of change detection estimates (see figure
7).

3 RESULTS AND DISCUSSION

A summary of the GAM fitting results are presented in table 1.
As we can see, in all models the spatial factor S(Z) = S(X,Y ),
which is a smooth function of location variables X and Y, is sig-
nificant. This suggests that there is a significant spatial variation
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in the non-error/error on the locations in the area. The UBRE
criterion was used for smoothing parameter estimation for all bi-
nomial models, and as we can see from the estimated degree of
freedoms the models selected are relatively complex. As Wood
(2006) explains model checking with binary data is not straight-
forward. Often the use of simulation is needed in order to com-
pare the residuals empirical distribution function with the distri-
butions of well (according to assumptions) behaved residuals. In
our case this is even more difficult if we take into account the
amount of (spatial) data involved and the time needed to simu-
late enough datasets. In addition, conventional residual plots will
not give us information regarding the autocorrelation of residu-
als. Variograms were used in order to check for possible spatial
dependence in the residuals (see figure 1). The percentage of de-
viance explained is also shown in table 1, indicating that there are
other factors, not included here that influence the probability of
erroneous classification. This is true for any classified image as
there are numerous factors that could influence the success of the
classification. However the aim here was to identify the spatial
variation in order to make informed decisions for further process-
ing or usability of the change detection results.

1975 Model 1990 Model 1999 Model 2007 Model
Intercept 14.171 76.03 52.20 29.105
(Std.Err) 2.181 16.83 12.93 6.448
(p-value) 8.13e-11 6.27e-06 5.44e-05 6.37e-06

s(X,Y)(p-value) 8.38e-13 0.000531 2.32e-06 1.41e-06
edf 143 98.58 77.05 163.7

Dev.expl. 57.1% 66% 51.4% 54.1%
UBRE score -0.58499 -0.72329 -0.76853 -0.59905

n 2647 2605 2682 3029

Table 1: Model results

Figure 1: Variograms of the deviance residuals for each image

Model predicted probabilities for the error status of each pixel (at
the image’s resolution) are shown in figures 2,3,4,5.

The results shown in figures 2-5 were for each classified image
separately. Although this is extremely useful itself, an estima-
tion is needed for the propagation of the error should a change
detection map is produced. Work on this issue is still under

Figure 2: Probability of pixels being correctly classified (1975)

Figure 3: Probability of pixels being correctly classified (1990)

Figure 4: Probability of pixels being correctly classified (1999)

Figure 5: Probability of pixels being correctly classified (2007)

progress, however a simple illustration can be seen below where
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Figure 6: Error propagation for 1975 and 2007 images (units are
probabilities of being correct)

Figure 7: Boxplot of land use changes vs probabilities of being
classified correctly 0:No change, 1:Bare Land to other, 2:Gar-
rigue losses, 3:Other crops losses, 4:Maquies losses, 5:Olives
losses, 6:Chestnuts losses, 7:Pines losses, 10:Olives gains,
99:Not possible. Box-plot width indicates pixel counts

the maps were considered as independent and the product of their
expected values was used to depict the combined probability of
non-error/error and its spatial variation for the change detection
map (see figure 6). Significance estimates are also needed here
but they are not available at the moment.

As a final result, a visualization/evaluation of the performance
of the change detection statistics can be produced in the form
of a box-plot of land use changes vs probabilities of change be-
ing identified correctly (see figure 7). As we can see from this
plot, the easily distinguished categories such as changes of the
phryganic vegetation are above 60% (at least the 75% of their
distribution). Categories such as olive grove changes (losses:5
and gains:10) having probabilities of being correctly identified
changes as low as 40% or even lower. This is mainly due to the
confusion of their spectral signatures with maquis (that include
abandoned oak cultivations). There is an opportunity here to as-
sess visually the quality of the change detection estimates.

4 CONCLUSIONS AND FUTURE WORK

From the results shown above we can see that it is possible to use
ground truth data and generalized additive modeling to assess the
spatial variation of non-errors/errors in land cover map. We can
also project the error propagation to the change detection map,
evaluating the probability to observe a true change. There are
still many challenges on the issue discussed and ongoing work
now is concentrating in modeling error propagation through the
multitemporal imagery and estimating significance of the final
error map.
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