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ABSTRACT:

Scaling effect of area-averaged NDVI is known as a source of error induced by differences in spatial resolution of two independent
measurements over a fixed area. It deteriorates accuracy in parameter retrieval via NDVI, thus its mechanism needs to be fully under-
stood for a better rectification of NDVI. The objective of this study is to investigate error bounds of averaged NDVI within a fixed area
as a function of spatial resolution under assumptions of multiple-endmember linear mixture model (LMM). The NDVI behavior was
first analyzed to identify the conditions regarding the choice of endmember spectra at which the averaged NDVI becomes the maximum
and minimum. A series of numerical simulations were conducted by assuming a four-endmember LMM to demonstrate the finding
such that the values of NDVI which show non-monotonic behavior fall into the ranges estimated from the two-endmember cases at all
the resolutions by choosing appropriate pairs of endmember spectra predicted from the analysis. It was concluded that the error in the
averaged NDVI over a fixed size of area composed of multiple endmembers can be bounded from the simpler two-endmember cases
which would be a key to predicting the maximum and minimum errors caused by the scaling effect.

1 INTRODUCTION

Long-term monitoring of global vegetation status plays an im-
portant role to understand land-atmosphere interactions and their
effects on climate change (Bounoua et al., 2000). To improve
accuracy in climate change prediction, integration of the results
from multiple sensors are needed (Los et al., 2000). However,
differences in sensor specifications such as spatial resolution and
spectral configuration could induce biases on parameter retrieval
from remotely sensed satellite data (Price, 1999, Tucker et al.,
2005, Pottier et al., 2006). For better interpretation of earth ob-
servation data, those errors need to be minimized based on a prior
and posterior knowledge about sensor characteristics.

The scaling effect is a fundamental issue of remote sensing that
induces biases in parameter retrieval over a fixed size of area
among measurements with different spatial resolutions (Hu and
Islam, 1997, Jiang et al., 2006). The scaling effect can be cate-
gorized into three (Chen, 1999), 1) effect of sampling schemes
(or point spread function) (Settle, 2005), 2) nonlinear effect of
retrieval algorithms (Hu and Islam, 1997, Jiang et al., 2006), and
3) effect of target heterogeneity (Hall et al., 1992, Friedl et al.,
1995). This study focuses on the nonlinearity of spectral vegeta-
tion index as an example. This issue has been widely discussed
up to date, yet, the uncertainty caused by the scaling effect has
not been fully clarified.

Normalized difference vegetation index (NDVI) is a ratio of the
difference between NIR and red band divided by their sum (Tucker,
1979). When the land surface is heterogeneous, an area-averaged
NDVI shows biases caused by its nonlinearity of the model equa-
tion. Numerous studies have discussed its scaling effect. For
example, those studies cover the themes of empirical investiga-
tions (Wood and Lakshmi, 1993, Cola, 1997), regression analy-
sis (Aman et al., 1992, Maselli et al., 1998, Thenkabail, 2004),
numerical experiments (Huete et al., 2005), and analytical stud-
ies (Hall et al., 1992, Hu and Islam, 1997, Jiang et al., 2006).
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There are basically two approaches to this problem. The first ap-
proach is relative calibration of the outputs from two different
sensors. In this approach, measurements from multiple sensors
of different spatial resolutions are transformed into a common
resolution by performing spatial averaging (Aman et al., 1992,
Maselli et al., 1998, Thenkabail, 2004). Then, regression analysis
is conducted to find a relationship among the sensors. This ap-
proach requires overlapping periods of data acquisition between
the two datasets, which is the major drawback of this approach.
The second approach is absolute calibration against the invariant
values which are determined hypothetically under a specific con-
dition. In this approach, the retrieved parameters from each pixel
in any resolutions are transformed into the absolute values of an
hypothetical case, for example, a case of extremely fine resolution
at which all the pixels consist of only one class of surface (hence
homogeneous). As a result, the VI value under the extreme case
is invariant against variations of pixel scale (Hu and Islam, 1997).
However, obtaining such an invariant value is a major challenge
(obtaining the value itself is often a goal of retrieval algorithms).

To proceed the analysis one step further for the scaling issue, we
try to predict the upper and lower limits of the error caused by
the resolution differences. If it is possible to predict the error
bounds of the NDVI caused by the scaling effects at any resolu-
tion case, it becomes easier to discriminate variations in NDVI
caused by an environmental change from the one caused by the
scaling effects. In addition, if the error bounds estimations can
be performed at any resolution independently from the results at
another resolution, the calibration technique does not require an
overlapping period between the two datasets.

A key to this approach is monotonic behavior of averaged NDVI
as a function of spatial resolution (represented by the number of
pixel in this study.) In general, NDVI is not monotonic along
with resolution. In our previous work, we found that there are
certain sequences of resolutions in which the values of NDVI
changes monotonically as resolution becomes finner under the
assumptions of two-endmember linear mixture model (Yoshioka
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et al., 2008). However, when the number of endmember spectra
becomes larger than two, the value of NDVI is no longer mono-
tonic. In this study, we investigate the error bounds of NDVI as a
function of spatial resolution under multiple endmember assump-
tions.

2 BACKGROUND

2.1 Source of Scaling Effect on NDVI

An area averaged value of NDVI can be obtained by two steps.
The first one is the band rationing process (retrieval algorithm)
represented by a function f,

Pn — Pr

flp) =

= 9]
Pn + Dr

where p = (pr, pn) represents a measured spectrum. The sub-
scripts  and n denote red and NIR bands, respectively. The sec-
ond step is the spatial averaging process (spatial filtering) repre-
sented by a function g as the follow.
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where P represents observed values (either spectral reflectance
or NDVTI in this study), and the subscript k£ denotes an individual
pixel. The integer NV represents the number of pixel within a re-
gion of interest to be averaged over. Then, a source of the scaling
effect on NDVI can be explained as a difference in the order of
performing these two steps.

The algorithm called ’distributed case’ (Hu and Islam, 1997), Vp,
performs the index calculation prior to the spatial averaging pro-

cess written as
Vb = (go f)(p). 3

On contrary, the algorithm called "lumped case’ (Hu and Islam,
1997), V1, performs spatial averaging process first,

Vi = (fog)(p)-

The output of the distributed case does not become identical to
that of the lumped case because of surface heterogeneity and non-
linear of the function f.

“
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2.2 Scaling Effect on Area-Averaged NDVI Under the As-
sumption of Two-Endmember Linear Mixture Model

A value of NDVI averaged over a certain area changes as the spa-
tial resolution of measurements (pixel size) changes. In general,
the averaged value of NDVI changes non-monotonously along
with spatial resolution. In order to predict an NDVI value at a
certain resolution based on a result of relatively coarser resolu-
tion case, one needs to know a degree of uncertainty caused by the
characteristic of non-monotonic behavior. For example, it seems
to be impossible to estimate the maximum and minimum values
of averaged NDVI as well as to identify the case of spatial resolu-
tions at which the maximum and minimum occur. The variation
range of NDVI value caused by the differences in spatial reso-
lution is unpredictable without knowing the maximum and mini-
mum values of NDVI as a function of spatial resolution. To pre-
dict the error bounds, area-averaged NDVI as a function of spatial
resolution must be investigated thoroughly. If the averaged NDVI
changes monotonously along with a certain resolution sequence,
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the NDVI values at the extreme resolutions certainly become the
maximum or minimum. It also means that the averaged NDVI
at intermediate resolutions do not exceed these extreme values.
For this purpose, monotonicity of averaged NDVI along with the
spatial resolution becomes a key to the identification of the error
bounds.

Several studies have shed the light on monotonic behavior of
area-averaged NDVI along with spatial resolution implicitly or
explicitly (Hu and Islam, 1997, Jiang et al., 2006). In those stud-
ies, land surface is assumed to be composed of only two surface
classes, vegetation and non-vegetation. Jiang et al. suggested that
area-averaged NDVI would change monotonously from coarser
to finer resolution (from lumped to distributed case), because
the land surface heterogeneity within pixels would decrease as
spatial resolution becomes higher (Jiang et al., 2006). Some-
what controversial conclusion is inferred from findings by sev-
eral studies. For example, Hu et al. approximated the differ-
ence of area-averaged NDVI between the two cases of extreme
resolution by a polynomial with variance and covariance of re-
flectance as its parameter (Hu and Islam, 1997). Based on their
findings, area-averaged NDVI would not necessary be monotonic
because variance and covariance of reflectance are not always
varied monotonously from coarser to finer resolution.

Yoshioka et al. demonstrated that area-averaged NDVI changes
monotonously as a function of spatial resolution within a certain
resolution sequence based on a two-endmember linear mixture
model (Yoshioka et al., 2008). With a resolution transfer model,
difference of area-averaged NDVI between resolution level 1 and
2 (resolution level is the number of pixel within a fixed area.)
are investigated analytically. From their findings, one could be
clarified that magnitude relationship of averaged NDVI between
resolution level j and j + 1, V; and V ;41 depends only on end-
member spectrum of vegetation and non-vegetation for a fixed
area, p1 and p2 (subscript, 1 and 2 represent vegetation and non-
vegetation class, respectively) as follows,

< Vj+1 when n <1
Vi{=Vjt1 when n=1 (0)
> V41 when 7> 1,
where ol
pP1
n= . (7
llp2||

Equation (6) implies that an averaged NDVI varies monotonically
as a function of spatial resolution within resolution sequences ob-
tained by the resolution transfer model (forward and backward
use of partitioning rule (Yoshioka et al., 2008)). Therefore, av-
eraged NDVI at extreme resolution, V1 and V o becomes maxi-
mum and minimum because 1) averaged NDVI changes monotonous
from coarser to finer resolution within a certain resolution se-
quence and 2) extreme resolution can be yielded by forward and
reverse use of partitioning rule. Thus error bounds of scaling ef-
fect could be specified by these values within two-endmember
assumption.

2.3 Example of Scaling Effect Under Three-endmember Lin-
ear Mixture Model

Area-averaged NDVI does not show monotonic behavior under
the three-endmember linear mixture model. We will provide one
such example in this subsection. Figure 1 shows a hypotheti-
cal field composed of three classes of surface (hence three end-
members), i.e., one vegetation class and two soil classes (soil-1
and soil-2). Spectral reflectances of red and NIR band of the
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Figure 1: Hypothetical field with three endmembers which are
vegetation and two types of soil surfaces (dark soil and bright
soil). Red and NIR reflectances for the vegetation endmember
are 0.05 and 0.4, respectively. The spectra of the dark soil and
bright soil are (0.15, 0.15) and (0.25, 0.25), respectively.
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Figure 2: Area-averaged NDVI with three-endmember linear
mixture model as a function of spatial resolution.

three endmembers are (0.05, 0.4), (0.15,0.15), and (0.25, 0.25)
for the vegetation, soil-1 and soil-2 classes, respectively. Area-
averaged values of NDVI for this field were obtained by assum-
ing several resolutions (Fig. 1). Figure 2 is the plot of aver-
aged NDVI as a function of spatial resolution. In the figure, the
maximum appears at an intermediate resolution, which clearly
indicates the fact that the range of NDVI variation cannot be es-
timated by the two extreme resolution cases (coarsest and finest
resolution cases).

Since the maximum and/or minimum value may occur at interme-
diate resolution case, the approach taken for the two-endmember
case cannot be applicable in the three-endmember (and higher)
cases. The purpose of this study is to demonstrate a key char-
acteristics of NDVI behavior as a function of spatial resolution
under multiple-endmember LMM.

3 SCALING EFFECT ON AREA-AVERAGED NDVI
WITH MULTIPLE ENDMEMBER LINEAR
MIXTURE MODEL

The maximum and minimum values of NDVI at a resolution case
can be estimated by finding the maximum and minimum value
NDVI for each pixel at any resolution cases. Thus, we need to
find the maximum and minimum bounds of the area averaged
NDVI for a given single pixel which contains three (or more)
types of surfaces (endmembers). For this purpose, we took an
approach to find the minimum and maximum values of NDVI as
a function of endmember spectra under a fixed value of fraction
of vegetation cover.
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3.1 Assumptions and Definitions

We divide the endmember classes into two categories which are
vegetation and non-vegetation. We then assume that the endmem-
ber spectra of vegetation classes fall into a single NDVI isoline as
illustrated in Fig. 3 so that the differences in spectra are simply
the magnitude of the reflectance (or brightness). Likewise, the
spectra of the non-vegetation endmembers fall into a single soil
line. In this study, we assumed that the soil line is identical to one
of the NDVI isolines whose NDVI value is zero (also illustrated
in Fig. 3.)

We focus on a behavior of NDVI within a single pixel, repre-
sented by V1 (resolution level j = 1), as a function of endmember
spectra under a fixed value of vegetation fraction. The average re-
flectance spectrum of each category can be written as a wighted
sum of all the i-th endmembers p;, (either vegetation (¢ = 1) or
non-vegetation (¢ = 2)) using w;q as weights for p;,. Subscript ¢
represents the individual endmember for the i-th category. Then
we have

1 &
P = (PrisPui) = o D_ WiaPia, ®)
7 g=1

where p,.; and p,,; are red and NIR reflectances of the i-th end-
member category, respectively. M; represents the number of end-
member for the i-th category. €2; is defined as

M;
Qi: E Wiq-
q=1

©

The reflectance spectrum under the multipel-endmember assump-
tion pr, = (Pmr, Pmn) can be represented by weighted average
of endmember spectra for vegetation and non-vegetation cate-
gories, p; and p,, respectively.

pm = p; + (1 —Q1)p,. (10)

Since we assume that the reflectance spectra of each endmebmer
are aligned in a single NDVI isoline, both p, and p, change along
with the NDVI isolines illustrated as a green and a brown dashed
line in Fig. 3.

Using these assumptions and definitions, V; under the multiple
endmember case can also be written by the same form of the two-
endmember case as,

Vl _ pmn - pmr
Pmn +pmr

_ h (CY — 1)?7‘1 + (1 — Ql)(ﬁnQ — ﬁrQ)
Ql(a + 1)57“1 + (1 - Ql)(ﬁn? +ﬁ7‘2)

an

(12)

where o represents the slope of the NDVI isoline for vegetation
class,

I

a="nt 13)
Pr1
3.2 V; as a Function of n
Partial derivative of V1 with respect to p,.; becomes
oV 2Q(1 — Q) (aPry — Pra) (14)

B, Q0+ QB+ (1= DBy — o)

In this equation, the term, (ap,,, — P,») becomes positive, be-
cause the NDVI value of the vegetation category is larger than
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Figure 3: Illustration about variation of vegetation and non-
vegetation spectrum within a multiple-endmember LMM as-
sumed in this study.

that of the non-vegetation category.

Br _ Pz g, (15)
Pr1 Pr2
[eA%]

Thus, all the terms in

fact that 21
. PT]‘ . — . . .
monotonically as a function of p,,. Finally, since 7 increases
monotonically as a function of p,.,, V1 also increases monotoni-

cally with 7.

. become positive, which leads to the
e

is always positive. It means that V; increases

3.3 Error Bounds of Averaged NDVI as a Function of End-
member Spectra

In the previous subsection it was shown that V; changes mono-
tonically as a function of p,,. It implies that Vi becomes the
maximum (V1 mae) When

Pr1 = Promaz = maz{priq}, (1<q < M), (16)

Q -1 T, max 1— Q P, —Pp
‘/l,rna:): — 1(& )p s +( 1)(€n2 672). (17)

Qi (a+1)prmas + (1 = Q1) (Do + Prao)
Likewise, Vi becomes minimum (V1 1in) When

Pr1 = Promin = min{pr1q}, (1<q<Mp),  (18)

Q -1 r,min 1-0Q p. - P
‘/vl,min — 1(a )p > + ( 1)(pn2 pr2) (19)

Ql(a + l)pr,min + (1 - Ql)(an +pT‘2) '

The value of Vi can be bounded by the choice of the two ex-
treme endmembers (pr max and pr min.) The similar results can
be obtained about the endmember choice of the non-vegetation
category. In summary, the error bounds of V; for the case of mul-
tiple endmembers can be estimated by the choice of these extreme
choices about the endmember spectra under the assumptions we
made in this study. These findings infer the followings: Although
the area averaged NDVI V; does not show monotonic behavior
(hence the maximum and/or minimum may occurs at an interme-
diate resolution), V; falls within the range between V1 4. and
V1,min. We will examine this implication in the next section by
conducting a numerical experiment.

4 NUMERICAL VALIDATION

4.1 Scaling Effect on NDVI as a Function of

Numerical experiments were conducted to validate error bounds
of scaling effect on averaged NDVI under multiple endmember

811

0.5
© Vg
0.4 P
® v 7
3 p
£0.3
+ ’
E .
4 S
0.2 . 2
o //
= o
S
0.1 1
ok
0 0.1 0.2 0.3 0.4

Red reflectance

Figure 4: Endmember spectra for vegetation and non-vegetation
surfaces in red-NIR reflectance space. Differences in the end-
member spectra among the classes are 1-norm which represents
magnitude of the spectra (brightness). v, and v denote vegeta-
tion endmembers, and s; and sz denote non-vegetation endmem-
bers.
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Figure 5: Area-averaged NDVI as a function of 7.

cases derived in this study. First, the dependency of the scaling
effect on the parameter 7 was examined assuming various reso-
lution cases for a fixed value of vegetation cover.

The hypothetical field consists of two vegetation and two soil
endmembers (total of four endmembers) shown in Fig. 4. The re-
flectance spectra of the two vegetation endmembers were chosen
from an identical NDVI isoline resulting the same NDVI value
for the pure signals. Thus, the only difference between the two
spectra is the brightness (magnitude). It leads to a difference in
the value of 77 depending on the choice of the spectrum. Similarly,
the endmemer spectra for the non-vegetation surfaces were cho-
sen from the soil line of which the slope and offsets are 1.0 and
0.0, respectively. This soil line is identical to the NDVI isoline
whose VI value is zero (Fig. 4). The four endmember spectra
represented by v1, v2, s1 and sz in Fig. 4 are set as follows:
vy = (0.04,0.36), v2 = (0.05,0.45), s1 = (0.15,0.15), and
s2 = (0.25,0.25).

To demonstrate the variations of NDVI as a function of 7, we
prepared a set of mixed signals under 50% of vegetation cover
for all the four combinations of vegetation and non-vegetation
endmember spectra. The computed NDVI values (V1) are plotted
as a function of 7 in Fig. 5. From the figure, V; depends on 7,
and increases monotonically along with 7 as expected from the
previous section. These results also imply that the VI values of
multiple endmember with those four spectra fall into the range of
two extreme combinations, namely, the choice of v, and sz for
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Figure 6: Hypothetical field with four endmembers including two
types of vegetation and two types on non-vegetation classes. The
red and NIR reflectances for each endmember are the same values
assumed in Fig.5.
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Figure 7: Area-averaged NDVI as a function of spatial resolution
with a four-endmember linear mixture model.

the minimum bound and the choice of v2 and s1 for the maximum
bound.

4.2 Error Bounds of NDVI as a Function of Spatial Resolu-
tion

The next example is about the four endmember cases. We will
demonstrate how the non-monotonic variations of NDVI can be
bounded by the two endmember cases by choosing vegetation
and non-vegetation spectra appropriately. A hypothetical field
was also assumed (illustrated in Fig. 6) which consists of all the
four spectra assumed in the previous subsection (also plotted in
Fig. 4).

The areas represented by the dark and light green patches in Fig.
6 denote the surfaces covered by vy and v2, respectively. While,
the areas represented by the dark and light brown patches denote
the surfaces covered by s; and s2. This hypothetical target were
divided into pixels to simulate various resolutions to obtain the
averaged NDVI as a function of spatial resolution which is rep-
resented by the number of pixel within the target area. Figure 7
shows the plot of NDVI along with the number of pixel included
within the target area. The maximum value occurs at an interme-
diate resolution. The figure clearly shows non-monotonic behav-
ior under the four endmember case. The error bounds cannot be
estimated from the lowest and highest resolution cases, which is
the major difference from the two endmember cases.

To demonstrate the error bounds induced by the variation in spa-
tial resolution under the multiple endmember assumptions, the
vegetation and non-vegetation endmembers are altered with the
spectra which results in the highest and lowest value of n. After
this alteration, we have two cases of two endmember assumptions
illustrated in Figs. 8 and 9. Note that the fraction of vegetation
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Figure 8: Altering image with brighter vegetation and darker soil
which maximize the value of 7.

Figure 9: Altering image with darker vegetation and brighter soil
which minimize the value of 7.

cover remains the same for all the cases shown in Figs. 6, 8, and
9. The averaged NDVI for the two endmember cases (Figs. 8,
and 9) are plotted with the original problem in Fig. 10. In the fig-
ure, the black solid line represents the NDVI of the original case
(with the four endmembers), and the blue and red dashed lines
represent the NDVI of the altering cases (two endmember cases)
of Figs. 8 and 9, respectively. The figure clearly shows that the
NDVI of the original four endmember cases falls into the values
between the two of the two endmember cases, which is also ex-
pected from the analysis of the previous section. Although V o is
between Vi min and Vi mae in this example, V oo would exceed
this range. Such an example can be easily imagine, e.g., to con-
sider a case in which both two endmember cases (red and blue
dashed lines) becomes increasing trend simultaneously. In such a
case, V oo becomes larger than Vi pqz, thus it becomes the max-
imum bound. Therefore, these results imply that the error bounds
can be estimated from the three values, namely, 1) Vi maz, 2)
Vl,mz‘n, and 3) Voo .

5 DISCUSSION AND CONCLUSIONS

The scaling effect of NDVI had been investigated under the as-
sumptions of four-endmember LMM. The influence of endmem-
ber spectra was discussed analytically to find the condition un-
der which two-endmember (instead of four-endmember) cases of
identical vegetation cover result in the maximum and minimum
values among the cases of two endmember choices. From the
findings of our previous work about the monotonicity of NDVI
under the two-endmember LMM, we found that the error bounds
of the NDVI induced by the scaling effect under the assumptions
of multiple-endmember LMM can be bounded by the values of
the three extreme resolution cases (V1 min, V1,maz, and Vo) Of
two-endmember LMM with appropriate choices of endmember
spectra.

A set of numerical experiments were then conducted to validate
the findings. Although the experiments clearly justify our the-
oretical findings, those experiments would never be enough to
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Figure 10: Area averaged NDVI as a function of spatial resolution
for the hypothetical fields shown in Fig.6, 8, and 9. Averaged
NDVI for the original image (Fig.6) is within a range defined by
the two altering images (Fig.8 and 9).

validate our theory. Further comprehensive experiments would
be needed to fully validate the theory. Moreover, applications of
the findings to actual data processing of satellite images will be
needed with the invention of error estimation technique based on
the theory.

To extend this study to practical use, Vl,min, Vl,mama and V o
must be estimated from a measured spectrum of the target pixel.
In addition, the two endmember spectra must be obtained within
a reasonable accuracy. Although there are techniques to extract
the averaged endmember spectra (Obata et al., 2008), those es-
timation/extraction would be a major source of difficulties in the
application of the theoretical findings.

Finally, the scaling effects are not limited to NDVI. Other spec-
tral vegetation indices such as SAVI and EVI and the parameter
retrieval algorithms using band ratios would also suffer from the
scaling effects. The influences of the scaling effects on those al-
gorithms needs to be invested from both the theoretical and prac-
tical view points.
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