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ABSTRACT: 

An approach is presented for detecting the buildings from high resolution pan-sharpened IKONOS imagery through binary Support 
Vector Machines (SVM) classification. In addition to original spectral bands, the bands nDSM (normalized Digital Surface Model),
NDVI (Normalized Difference Vegetation Index), PC1, PC2, PC3, and PC4 (First, Second, Third, and Fourth Principal 
Components), are also included in the classification. The proposed classification procedure was carried out in three study areas
selected in the Batikent district of Ankara, Turkey. The study areas show different residential and industrial characteristics. The first 
study area covers mainly the residential parts that include buildings with different shapes, sizes, dwelling types, and colored roofs. 
The second study area also represents the residential characteristics but contains buildings with more regular shapes. The third study 
area contains the industrial buildings with the gray tone roofs and the sizes of the buildings are larger. Also tested in the present
study is the effect of the training sample size in the accuracy of the SVM classification. The results reveal that the overall accuracies 
were computed to be between 90% and 99%, while the kappa coefficients were found to be between 0.80 and 0.98. The inclusion of 
additional bands in the SVM classification had a considerable effect in the accuracy of building detection. Increasing the training 
size increased the accuracy, however, the increase was not more than 3%. 

                                                                
*  Corresponding author.  

1. INTRODUCTION 

Automatic building extraction from high resolution imagery is a 
very challenging task and has been the focus of intensive 
research for the last decade. High resolution satellite images 
provide a valuable new data source for geographic data 
acquisition, mapping applications, and urban planning. In the 
last decade, spaceborne remote sensing has experienced with an 
intensive technological development. The high resolution 
satellite images are being increasingly used for the detection of 
the buildings. Of the techniques used, automatic image 
classification is the most widely used technique for the 
detection of the buildings. 

In a conventional supervised classification all classes must be 
defined and trained in detail. If the interest is to a single class, 
the use of a conventional supervised image classification 
technique may be inappropriate (Foody et al., 2006). Support 
Vector Machines (SVM) classification is a supervised 
classification technique derived from the statistical learning 
theory. Originally the SVMs were designed for binary 
classification and then extended for multi-class classification. 
Foody et al. (2006) claimed that one class SVM classification 
has a great potential in remote sensing. Boyd et al. (2006) used 
this classification technique for mapping a specific class for the 
priority habitats monitoring. Sanchez et al. (2007) used it for 
mapping a specific class from Landsat 7 ETM+ image.  

The past studies have shown that the SVM classification 
technique provides higher accuracy than the standard 
parametric and popular classification techniques in the 
classification of the remote sensing images (Huang et al, 2002; 
Zhu and Blumberg, 2002; Pal and Mather, 2005; Foody and 

Mathur, 2004, Watanachaturaporn et al. 2008). 
Watanachaturaporn et al. (2008) compared SVM classifier with 
the Maximum Likelihood Classifier (MLC), Backpropagation 
Neural Network Classifier (BPNN), Radial Basis Function 
Neural Network Classifier (RBFNET), and the Decision Tree 
Classifier (DTC) and found that the SVM classifier produced 
significantly higher accuracy than the others. 

Several studies have used multi-class SVM classification for 
land use detection of urban areas from high resolution satellite 
images. Tuia et al. (2010) performed SVM classification using 
composite kernels for the classification of high resolution urban 
images and concluded that a significant increase in the 
classification accuracy was achieved when the spatial 
information was used. Huang et al. (2007) proposed an adaptive 
multiscale information fusion algorithm to extract the spatial 
features and classify the high resolution imagery. Li et al. 
(2010) presented an object-oriented classification method based 
on the improved colour structure code and SVM. Their results 
indicate that perfect fusion strategy and classification pre-
processing are helpful for improving the classification accuracy. 
Bellman and Shortis (2000) used SVM Classification technique 
and Wavelet Transform to detect building areas from aerial 
images and they concluded that this technique appears to be 
quite promising for use in the initial building detection 
procedure. 

In the present study, we present an approach for detecting the 
buildings from high resolution pan-sharpened IKONOS 
imagery through binary SVM classification. In addition to 
original spectral bands of the IKONOS pan-sharpened image 
(Blue, Green, Red, NIR), the bands nDSM, NDVI, PC1, PC2, 
PC3, and PC4 are also included in the classification process. To 
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assess the effect of sample size on the classification accuracy, 
the SVM classification was carried out using three different 
sample sizes of 500, 1000 and 2000. 

2. THE METHODOLOGY 

The flowchart for the proposed building detection procedure is 
given in Figure 1. First, a Digital Terrain Model (DTM) is 
generated from the existing vector data that contains contour 
lines and 3D points. Then, a DSM is generated from the stereo 
IKONOS Panchromatic image pairs. After generating the DTM 
and DSM, an nDSM is calculated by subtracting DTM from 
DSM. Next, the orthorectification of the pan-sharpened 
IKONOS image is carried out using the DSM. After that, the 
bands NDVI, PC1, PC2, PC3, and PC4 are calculated from the 
pan-sharpened IKONOS image. Finally, to detect the buildings, 
the orthorectified pan-sharpened IKONOS image along with the 
additional bands nDSM, NDVI, PC1, PC2, PC3, and PC4 is 
classified using the SVM classifier. After completing the 
classification, the artefacts are removed using the 
morphological operations and the non-building areas are 
masked out.  

Figure 1. The flowchart of the building detection procedure. 

3. THE STUDY AREA AND DATA SETS 

The proposed building detection procedure was implemented in 
three selected areas in the Batikent district of Ankara, the 
capital city of Turkey (Figure 2). The areas show different 
residential and/or industrial characteristics. The first study area 
(Sub-Area I) covers the residential part of Batikent and includes 
buildings with different shapes, sizes, and dwelling types. The 
buildings falling within this area have different coloured roofs. 
The second study area (Sub-Area II) also represents the 
residential characteristics but compared to Sub-Area I it 
contains buildings with more regular shapes. The third study 
area (Sub-Area III) covers the industrial parts, where the roofs 
are usually in gray tone and compared to buildings in Sub-Area 
I and Sub-Area II the size of the buildings are larger. 

The data sets used include the stereo panchromatic and the pan-
sharpened IKONOS images and the existing building database, 
which was generated in 1999 from stereo aerial images. The 

IKONOS images were acquired on August 4, 2002. They were 
in Geo data format, which is the most economical product 
within the all IKONOS products. To evaluate the results, a 
reference building database was generated by updating the 
existing building database. To do that the missing and new 
buildings were visually detected on the screen and they were 
manually edited.  

(a) 

(b) (c) (d)

Figure 2. (a) The study area located in the Batikent district of 
Ankara. The  Sub-Area I (b), Sub-Area II (c), and  Sub-Area III 

(d).  

4. GENERATING THE ADDITIONAL BANDS 

In the present case, the bands nDSM, NDVI, PC1, PC2, PC3, 
and PC4 were also included in the classification. The band 
nDSM was included in the classification process so that it could 
help separate those man-made objects with different heights 
above the terrain. Similarly, the band NDVI was used as an 
additional band because it helps differentiate those buildings 
that are surrounded by trees and green vegetated areas. Our 
previous experiences have revealed that the industrial buildings 
with white or blue concrete roofs, which are dominant in Sub-
Area III, are more easily detected on the band PC2, while the 
residential buildings with tile-roofs are more clearly 
differentiated on the band PC3. Therefore, it is evident that the 
inclusion of the Principal Components (PCs) in the 
classification process will increase the separation of the 
buildings from the non-building classes. 

4.1 Calculating the Normalized Digital Surface Model 

In the building detection procedure, the basic idea of using an 
nDSM is that the man-made objects with different heights 
above the terrain can be detected by applying a threshold to 
nDSM. A DTM is the elevation model of the landscape that 
does not include above ground objects. On the other hand, a 
DSM includes the objects with their heights above the ground 
as well as the topography. To calculate nDSM, a DSM was 
generated from the stereo panchromatic IKONOS images and a 
DTM was generated from the contour lines. Then, an nDSM 
was calculated by subtracting the DTM from the DSM. Next, to 
separate the above ground features from the terrain surface, a 
threshold value of 3m was applied to nDSM.  
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4.2 Orthorectification 

To remove geometric distortions including relief displacement, 
both the panchromatic and pan-sharpened IKONOS satellite 
images were orthorectified. The orthorectification of the images 
was necessary so that the building areas to be extracted through 
SVM classification could be overlaid with the existing GIS 
database. The DSM used for the orthorectification procedure 
was the previously generated DSM from the stereo IKONOS 
panchromatic images.  

4.3 Calculating the Normalized Difference Vegetation 
Index (NDVI) 

The NDVI was used to detect the vegetated areas in the image. 
It was calculated using the red and near-infrared bands of the 
orthorectified IKONOS pan-sharpened (PSM) images (Eq.1); 

3PSM4PSM
3PSM4PSMNDVI

�
�

� (Eq. 1) 

where; PSM 4 is the NIR band and PSM 3 is the red band of the 
IKONOS pan-sharpened satellite image. 

4.4 Principal Components Analysis 

The Principal Component Analysis (PCA) is a technique 
designed to reduce redundancy in multispectral data (Lillesand 
and Kiefer, 1999). It is mainly used to reduce the number of 
bands. However, Singh and Harrison (1985) claim that the PCs 
may become more interpretable than the original data. 
Therefore, to include in the classification procedure the 
Principal Components were generated from the IKONOS pan-
sharpened image bands. The spectral statistics of the IKONOS 
pan-sharpened image is given in table 1. 

PC Eigen Value Std. Dev. Variance (%) 
1 132476.10 363.89 91.45 
2 10295.38 101.46 7.11 
3 1942.12 44.08 1.34 
4 151.12 12.28 0.10 

Table 1. The spectral statistics of the principal components. 

5. SUPPORT VECTOR MACHINES (SVM) 
CLASSIFICATION 

SVM is a supervised classification technique derived from 
statistical learning theory. The fundamentals of SVM were 
developed by Vapnik (1995). The SVM classification contains 
mainly three steps. First, the trainings of the classes are 
represented as feature vectors. Next, to perform the separation, 
these feature vectors are mapped into a feature space by using 
the kernel function. Finally, an n-dimensional hyperplane that 
optimally separates the classes are created. 

To classify the pixels accurately, SVM develops a model using 
the training data of two separable classes with i samples 
represented by (x1, r1), …, (xi, ri), where xi � Rn and r � {1,-1}
in the n dimensional space. Here, xi is the spectral value of the 
training data while ri is the class label for a training case.  

During the learning process, SVM optimizes the hyperplane 
position to have a maximum margin between the classes that 
are on different sides of the hyperplane. There may be many 
hyperplanes that separate the classes; however the aim is to find 
the optimum one and to maximize the margin. A hyperplane 
that separates the classes can be defined by the following 
equation (Eq. 2): 

w.x + b = 0 (Eq. 2) 

where, w is the normal to the hyperplane, x is a point lying on 
the hyperplane, and b is the bias.  

For the linearly separable two class case, a hyperplane can be 
defined as

w.xi + b � +1  for all ri = +1,    (Eq. 3) 

w.xi + b � +1  for all ri = �1. (Eq. 4) 

The equations 3 and 4 can be combined into a single equation 
(Eq. 5); 

ri (w.xi + b) – 1 � 0  (Eq. 5) 

The points on these hyperplanes are called the support vectors.
The hyperplanes are used to define the optimal separating 
hyperplane. The optimal separating hyperplane is parallel to the 
hyperplanes and stays in the middle of them. The margin 
between these planes is 2/||w|| (||w|| is the Euclidean norm of 
w). The maximization of this margin causes the optimization 
problem given below and equation 5 is the constraint:  

min {1/2 ||w||2}  (Eq. 6) 

This problem can be defined by Lagrange multipliers: 

Maximize: 

� �jiiii
k
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i

k
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2
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���
� (Eq. 7) 

Subject to:   

0ri
k

1i
i ��

�
� and �i � 0,   i= 1,2, …,k (Eq. 8) 

The decision rule is then applied for classifying the data into 
two classes; +1 indicating one class and -1 the other class. 
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If the classes in the dataset are mixed, the data may not be 
separated linearly. In the non-linear separable case, equation 7 
cannot be fulfilled as constraint and therefore, slack variable (�)
and penalty parameter (C) are defined. With the addition of 
these parameters the optimization problem and the constraints 
become:
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ri (w.xi + b) � 1– �i  (Eq. 11) 
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The penalty parameter (C) value is a form of regularization 
parameter and defines the trade off between the number of 
noisy training samples and classifier complexity. The approach 
can be adapted to allow for non-linear surfaces by transferring 
the training data into a high dimensional (feature) space (Figure 
3).

This time the problem can be defined by Lagrange multipliers 
using kernel function (K): 

Maximize: 

� �jiiii
k

1i
i

k

1i

k

1i
i x.xKrr

2
1 ��� ���

���
� (Eq. 12) 

Subject to: 

0ri
k

1i
i ��

�
� and  0 � �i � C,  i= 1,2, …,k (Eq. 13) 

(a) (b) (c) 

Figure 3. The processes of SVM classification. (a) The feature 
vectors of two classes in input space, (b) the feature vectors of 
two classes separated by a hyperplane in feature space, and (c) 

the separated two classes in the input space. 

Using kernel function leads to change in decision rule as given 
below:
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There are different types of kernel types for different 
applications. The most common kernel types are Linear,
Polynomial, Radial Basis Function (RBF), and Sigmoid;

Linear: K(xi,xj) = xiT xj
Polynomial: K(xi,xj) = (� xiTxj + r) d, � > 0  
RBF: K(xi,xj) = exp(-� ||xi - xj||2), � > 0  
Sigmoid: K(xi,xj) = tanh (� xiTxj + r)  

where:
� is the gamma term in the kernel function for all kernel types 
except linear, d is the polynomial degree term in the kernel 
function for the polynomial kernel, r is the bias term in the 
kernel function for the polynomial and sigmoid kernels. 

In the present study, the IKONOS pan-sharpened image 
covering the study areas was separated into the building and 
non-building classes through SVM classification. To perform 
the classification, the original and the derived bands of the 
IKONOS pan-sharpened image were labelled as follows: 

B1: Band Blue  
B2: Band Green  
B3: Band Red  
B4: Band NIR  
BnDSM: Band nDSM  
BNDVI: Band NDVI  
BPC1: Band PC1 (1st Principal Component)  

BPC2: Band PC2 (2nd Principal Component)  
BPC3: Band PC3 (3rd Principal Component)  
BPC4: Band PC4 (4th Principal Component)  
By using these bands, fourteen image data sets were generated 
to perform the SVM classification (Table 2).  

Data-Sets Band Combinations 
Data-Set 1 B1, B2, B3, B4
Data-Set 2 B1, B2, B3, B4, BnDSM
Data-Set 3 B1, B2, B3, B4, BNDVI
Data-Set 4 B1, B2, B3, B4, BPC1
Data-Set 5 B1, B2, B3, B4, BPC2
Data-Set 6 B1, B2, B3, B4, BPC3
Data-Set 7 B1, B2, B3, B4, BPC4
Data-Set 8 B1, B2, B3, B4, BnDSM, BNDVI
Data-Set 9 B1, B2, B3, B4, BnDSM, BPC2
Data-Set 10 B1, B2, B3, B4, BnDSM, BPC3
Data-Set 11 B1, B2, B3, B4, BnDSM, BNDVI, BPC2
Data-Set 12 B1, B2, B3, B4, BnDSM, BNDVI, BPC3
Data-Set 13 B1, B2, B3, B4, BPC1, BPC2, BPC3, BPC4
Data-Set 14 B1, B2, B3, B4, BnDSM, BNDVI, BPC1, BPC2, BPC3,

BPC4

Table 2. The data sets and their band combinations used in the 
SVM classification. 

After generating the image data sets, the training samples were 
collected from the representative homogeneous areas. In the 
present case, the class to be extracted was the building class, 
while the other classes including vegetation, road, bare land, 
shadow, and pavement composed the non-building class. An 
equal number of training pixels was collected for both the 
building and non-building classes. For the non-building class, 
the percentages of the training pixels were determined in 
accordance to the distribution of the class types. Initially, the 
training samples were collected manually. Then, 500, 1000, and 
2000 pixels were randomly selected from the collected training 
areas. To make the assessments of the classified images, the test 
pixels were also collected from different locations than the 
training pixels as they must represent the unbiased reference 
information. We collected 2000, 4000, and 8000 test pixels, 
respectively for assessing the classifications conducted using 
500, 1000, and 2000 training pixels. 

For performing the SVM classification, the selection of the 
kernel method, determination of the C parameter, and the 
parameters related to the kernel are important. In the present 
case, the Radial Basis Function (RBF) was selected as the 
kernel method. This function can handle linearly non-separable 
problems and works well in most cases (ENVI Manual, 2006). 
In addition, � was determined as the inverse of the number of 
bands in the input image and 1000 was taken for the value of 
the parameter C.

After performing the one-class SVM classification, the 
classified images contained two classes, one representing the 
building areas and the other representing the non-building areas. 
Next, the non-building areas were masked out from the 
classified images and therefore, the classified images contained 
only the building areas. Due to misclassification, the classified 
building areas contained artefacts. Therefore, these artefacts 
were removed using the morphological operations, which are 
image processing operations based on the shapes. In the present 
case, to eliminate those image details smaller than the 
structuring element, the opening and closing operations, which 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Volume XXXVIII, Part 8, Kyoto Japan 2010

844



are based on erosion and dilation operations, respectively, were 
used. Therefore, the global shape of the objects was not 
distorted (Sonka et al, 1998). An opening filter removes thin 
protrusions, outward pointing boundary irregularities, thin joins, 
and small isolated objects. On the other hand, a closing filter 
removes the thin gulf, the inward-pointing boundary 
irregularities and small holes (Gonzales et al, 2004). Therefore, 
combining a closing and an opening can be quite effective for 
removing the artefacts or noise. 

6. THE RESULTS  

The SVM classifier produced quite accurate results for the 
proposed building detection procedure. For all test areas, the 
overall accuracies were computed to be between 90% and 99%. 
Similarly, the Kappa Coefficients were found to be between 
0.80 and 0.98. For Sub-Area I, Sub-Area II, and Sub-Area III, 
the assessment results of the SVM classification conducted 
using 500, 1000, and 2000 training samples are given in tables 
3, 4, and 5 respectively. In figure 4, the classified images 
carried out using Data-Set 8 and 500 training samples are 
illustrated.

Table 3. The assessment results for Sub-Area I. 

Table 4. The assessment results for Sub-Area II. 

Table 5. The assessment results for Sub-Area III. 

(a) (b) (c) 

Figure 4. The classified images for (a) Sub-Area I, (b) Sub-Area 
II (b), and (c) Sub-Area III. 

For Sub-Area I, with the use of 500 training samples, the 
overall accuracies were computed in the range of 95.25% - 
98.85%, while the Kappa Coefficients were computed in the 
range of 0.905 - 0.977. For Data-Sets 2, 8, 9, 10, 11, 12, and 14, 
the overall accuracies stayed above 98 %, while the other data 
sets provided relatively lower accuracies. With the use of 1000 
training samples, the overall accuracies were computed in the 
range of 95.75% - 98.73%, while the Kappa Coefficients were 
computed in the range of 0.915 - 0.974. Similar to the results of 
500-sample classification, the Data-Sets 2, 8, 9, 10, 11, 12, and 
14 provided the best results with the overall accuracies higher 
than 98%. The SVM classification conducted using 2000 
training samples provided the overall accuracies in the range of 
95.31% - 98.71%, while the Kappa Coefficients were computed  
in the range of 0.906 - 0.974. In this case, the Data-Sets 2, 8, 9, 
10, 11, 12, and 14 provided the best results with the overall 
accuracies higher than 98%. 

For Sub-Area II, with the use of 500 training samples, the 
overall accuracies were computed in the range of 93.65% - 
96.50%, while the Kappa Coefficients were computed in the 
range of 0.873 - 0.930. For Data-Sets 2, 8, 9, 10, 11, and 12, the 
overall accuracies were computed on the order of 96%, while 
the remaining data sets provided slightly lower values. With the 
use of 1000 training samples, the overall accuracies were 
computed in the range of 91.60% - 97.15%, while the Kappa 
Coefficients were stayed in the range of 0.832 - 0.943. In this 
case, the Data-Sets 2, 8, 9, 10, 11, and 12 provided the highest 
overall accuracies of above 96%, while the remaining data sets 
provided slightly lower values. The SVM classification 
conducted using 2000 training samples provided the overall 
accuracies in the range of 92.15% - 97.16%, while the Kappa 
Coefficients were computed in the range of 0.837 - 0.943. In 
this case, the Data-Sets 2, 8, 9, 10, 11, 12, and 13 provided the 
best results with the overall accuracies above 96%, while for 
the remaining data sets, the accuracies computed were slightly 
lower. The Data-Set4 provided the lowest accuracy of 91.84%. 

For Sub-Area III, with the use of 500 training samples, the 
overall accuracies were computed in the range of 89.70% - 
96.85%, while the Kappa Coefficients were computed in the 
range of 0.794 - 0.937. For Data-Sets 2, 8, 11, 12, and 14, the 
overall accuracies were computed on the order of 96%, while 
the remaining data sets provided slightly lower values. With the 
use of 1000 training samples, the overall accuracies were 
computed in the range of 91.63% - 97.88%, while the Kappa 
Coefficients were computed in the range of 0.832 - 0.948. In 
this case, Data-Sets 2, 8, 9, 11, and 14 provided the highest 
overall accuracies on the order of 97%, while for the remaining 
data sets, the computed accuracies were slightly lower. The 
Data-Set 3 provided the lowest accuracy of 91.63%. The SVM 
classification conducted using 2000 training samples provided 
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the overall accuracies in the range of 92.01% - 97.85%, while 
the Kappa Coefficients were computed in the range of 0.840 - 
0.957. The Data-Sets 2, 8, 9, 11, 12, and 14 provided the overall 
accuracies of above 97%, while for the remaining data sets, the 
accuracies were computed to be slightly lower. In this case, the 
Data-Set 4 provided the lowest accuracy of 92.01%. 

7. THE CONCLUSIONS  

We showed in the present study that the inclusion of the 
additional bands nDSM, NDVI, and PCs in SVM classification 
increased the classification accuracy for detecting the buildings. 
While the overall accuracy was increased up to 7%, the Kappa 
Coefficients were increased up to 0.13. In specific, the inclusion 
of the band nDSM in SVM classification increased the accuracy 
up to 6.5%. Unexpectedly however, the inclusion of the band 
NDVI did not show a high percentage of increase in the 
classification accuracy. Similarly, the inclusion of each of the 
PCs in the classification process did not lead to any significant 
difference. However, including the all PCs at once in the 
classification process improved the overall accuracies up to 4%.  

Concerning the effect of the training sample size on the 
classification accuracy we can state that increasing the training 
sample size increases the accuracy. However, in the present 
case the increase was not observed to be more than 3%. This is 
due to the fact that in SVM classification the location of the 
training samples in the feature space is more important than the 
training sample size. 
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