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ABSTRACT:

It is important to know how urban areas change for monitoring the evolution of demographics, lifestyles, and economic trends. The
objective of this paper is to present a method for determining the occurrence of building change between two dates. The information
on buildings for the first date comes from digital cartography and for the second date comes from spatial imagery and LIDAR data.
A Support Vector Machine algorithm with automatic training was applied to detect the buildings on the second date and then the 
results were compared with the buildings of the first date, represented by vectorial data from the digital cartography. It is argued
how urban vegetation change could also be derived from the building change study. Two areas of four square kms each, from central
Spain, were considered to test the proposed approach. The first area corresponds to the university Campus of Alcala, where few 
changes have happened in the last years; and the second area corresponds to a new residential area in the suburb of the city of
Alcala, with many constructions in the last years. Results showed a 1% and 7% increase of buildings respectively. The proposed 
method was evaluated for efficacy and suitability using ground truth obtained manually for the second area. Some discussion and
conclusions are stated about the approach to be used and the best data entry in order to obtain an optimal performance. 
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1. INTRODUCTION

The Earth surface is being significantly altered mostly due to 
anthropogenic activities. Land use and land cover change 
(LULC) has become a central factor in current strategies for 
managing natural resources, monitoring environmental changes 
and estimating urban growth. Detecting land-cover land-used 
changes using spatial data bases and remote sensing imagery is 
one of the most important applications of remote sensing. But 
monitoring and mapping requires reliable data and regular 
intervals. Currently, the interpretation of high-resolution 
satellite images is carried out “manually” by visual 
interpretation. This is so because traditional classification 
algorithms that were used for low resolution data are too limited 
in dealing with the complexity of high-resolution data available 
today. 

In this paper we examined changes in urban and suburban 
areas; specifically, we focused on buildings, which are good 
indicators of urban dynamics. In the LULC for Spain, the 
national mapping agency (The National Geographic Institute) 
has developed the program Sistema de Información del Suelo de 
España SIOSE (Valcarcel et al., 2008). This is a new LULC for 
Spain designed according to the INSPIRE principle, and ISO 
TC/211 standards. It divides the territory into parcels or 
polygons; each parcel was assigned one or several simple 
covers. Each cover was given a percentage of occurrences of 
this cover within the parcel. Among the different land cover 
types, in this paper we studied only the one for buildings, using 
as a measure of change the percentage of change on the 
buildings’ occurrence within the parcel. The first SIOSE was 
completed in 2009, in subsequent years there will be a need for 

updating it. Updating is usually done using photointerpretation 
and terrain visits. This is similar to what happened in the rest of 
Europe when updating their LULC cartography. There is a 
general need for automatic or at least semi-automatic methods 
to help in the updating process. 

Changes between two dates can be studied with different types 
of data. It can be compared by vectorial data with vectorial 
data, vectorial with raster, or raster with raster. In this paper 
vectorial data is compared with raster. Within each type of data, 
vectorial and raster, it can be used with aerial imagery, satellite 
imagery, optical or radar, LIDAR, or miscellanea from 
secondary sources such as cartography. It can be used at 
different resolutions and scales. Therefore the different numbers 
of combinations is large. It is important to know the optimal 
combination of the type of data for tackling a specific problem. 

In this way Grey et al. (2004), have studied urban change in the 
UK using satellite radar interferometry. Many other types of 
data have been used for change detection. Only considering 
multi-spectral imagery and LIDAR data there are many 
possibilities of data combinations for studying change 
detection. Knudsen and Olsen (2003) studied change detection 
for updating map databases. Olsen (2004) stated that spectral 
information of buildings is ill-defined and proposed using 
LIDAR in assisting the change detection for updating the 
TOP10DK database map. A paper by Sohn and Dowman (2007) 
proposes a new building extraction method from IKONOS 
imagery and LIDAR. The approach detected dominant features 
comprising the urban scene isolating construction from 
surrounding features. As a case study the technique was applied 
to a sub-scene of the Greenwich area in London and the results 
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showed that the approach successfully delineated most 
buildings in the scene. 

The measurement of impervious surfaces has become a 
necessity for a number of applications. Hung and Germaine 
(2008), using multispectral and LIDAR, obtained 91% 
accuracy, while when adding LIDAR it increased to 94%. In 
general, when LIDAR is added the detection of buildings and 
other classes are improved (see Alonso and Malpica, 2008). 

We present a method for automatic building change detection, 
based on the Support Vector Machine (SVM) algorithm. The 
input to the algorithm is the four pansharpened bands (2.5 
meters of resolution), the normalize Digital Surface Model 
(nDSM) and the vector layer from the Spanish national 
cartographic data base. The output from the algorithm is the 
layer of probability for buildings that is converted to a binary 
image with a threshold. Once the percentage of building 
occurrence in the area is calculated, a comparison with the 
percentage of building occurrence in the cartography for a 
previous date is obtained. 

Results confirm the findings presented in other symposiums and 
journal works that height is fundamental when detecting 
buildings. For that reason, the introduction of LIDAR has been 
a key to the success of the proposed method, since it has 
obtained a detection rate superior to 90% in most cases. 

2. MATERIALS AND STUDY AREA 

            (a)                           (b)                             (c) 
Figure 1.  (a) Aerial Image with Vectorials, (b) nDSM with 

Vectorials, and (c) False Color Pansharpened SPOT5 Image (�
SPOT Image Copyright 2004) 

In this paper we studied the change in buildings between two 
dates 6 years apart of an area of central Spain, the city of Alcala 
de Henares and surroundings in Madrid. The first data 
belonging to the year 1999 consists of only vectorial 
cartography. While the second set of data from 2006 comprise 
SPOT5, aerial imagery and LIDAR data. 

The digital cartography used in this work is taken from a 
Spanish digital database called Base Cartográfica Nacional 
(BCN), the part we are studying was compiled in 1999. It has a 
scale of 1:25000. Figure 1 (a) and (b) show an example of the 
vector cartography overlaying the aerial image and the LIDAR, 
respectively. 

There are many high resolution satellites today, from them we 
took SPOT5, which is the fifth satellite of the SPOT series 
program designed by the France Centre National D'éstudes 
Spatiales. The image we used was taken at 11:23 GMT on 
August 6, 2006, the sun had an elevation of 62.37º and an 
azimuth of 150.06°. This image was obtained with spatial 
resolutions: 2.5 m in panchromatic mode and 10 m for three 
multispectral bands in the blue, red and short infrared, and 20 m 

resolution for a middle infrared band. Applying Principal 
Component Analysis all bands were pansharped to a resolution 
of 2.5 meters. 

LIDAR systems record data elevation by measuring the time 
delay between a pulse emission (from an aeroplane to the 
terrain) and their detection by the reflected signal. The resulting 
data gives rise to a very dense network of points. It provides 
data not only for the first return but also the second and third, 
providing heights of buildings and vegetation. A significant 
advantage to this technology is that data can be captured 
independent of atmospheric conditions. For instance, data 
collection can be performed from an airplane in flight at night 
or in low visibility conditions. The point density of the LIDAR 
data used in our experiment was 0.5 point per square metre, 
which represents about three points for each SPOT5 pixel. 

A Digital Terrain Model (DTM) is a numerical data structure 
that represents the spatial distribution of the ground surface 
altitude. The DTM provides the so-called bare earth model, 
devoid of landscape features. In contrast, a Digital Surface 
Model (DSM) can be useful for modelling landscapes, shaping 
cities, and allowing the development of visualization 
applications. The LIDAR data used in this work were derived as 
a subtraction of the DSM from the DTM; in that way the 
normalized digital surface model (nDSM) (Figure 1 (b)) was 
obtained. See Martinez de Aguirre and Malpica (2010) for more 
details on how this was done. 

Aerial imagery was used only for representation purposes. It 
was taken from the Spanish Mapping Agency PNOA 
(Arozarena et al., 2005). This image has a resolution of 0.5 
meters. The reason to use SPOT5 instead of aerial images is 
that SPOT has two infrared bands while aerial had none (during 
the time of the study in 2006), and infrared bands are useful for 
detecting vegetation, and separating it from the buildings. 
Currently, most aerial surveying in Spain is done with RGB and 
infrared.

3. METHOD

The problem is that in the normalized DSM (see Figure 1 b) 
buildings cannot be distinguished from vegetation 
automatically. Developing algorithms for the automation of this 
task is a key point for full automatic building change detection. 

The support vector machine (SVM) is a popular classification 
technique that was first proposed by Boser et al. (1992) who 
applied SVM to solve optical character recognition problems. 
From a theoretical point of view, SVM is based on the 
statistical learning theory proposed by Vapnik (1995). SVM is 
basically a binary classifier that maximizes the margin between 
the training patterns and the decision boundary. SVM has been 
shown to be superior to other classification methods, such as to 
Mahalanobis distance (Rodríguez- Berrocal and Malpica, 2010; 
García-Gómez et al., 2010) or artificial neural networks 
(Rodriguez and Malpica, 2010). 
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Figure 2.  Flow chart 

Our research group in Alcala implemented an algorithm using 
SVM to separate high vegetation and buildings. Using it a 
classification for the buildings was obtained. A schematic 
representation of the sequence of operation of the method can 
be seen in the flow diagram of Figure 2. The training for the 
algorithm was taken automatically from the cartographic data 
base BCN. The accuracy of the results is presented by the 
Receiver Operating Characteristic (ROC) (Swets, 1979). A 
detailed explanation of the algorithm will be published 
elsewhere (Malpica and Alonso, 2010). 

Figure 3.  ROC for the SVM Algorithm 

The accuracy of a classifier can be measured by the area under 
the ROC curve, in our case (Figure 3) was at 0.95. The shape of 
the ROC curve tells us that it depends where the threshold is 
considered to have more or less false positives or negatives. 

                          (a)                                                                      (b)                                           (c) 

                         (d)                                                                      (e)                                           (f) 

Figure 4.  (a) Aerial Image of the University Campus of Alcala; (b) 1999 Building Mask, (c) 2006 Building Mask from SVM 
Classification (d) Aerial Image of the La Garena; (e) 1999 Building Mask, (f) 2006 Building Mask from SVM Classification 
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4. RESULTS AND DISCUSSION 

The proposed approach has been tested for two chosen areas 
in Madrid, Central Spain. One belongs (Figure 4 (a)) to the 
university campus of Alcala and the other to a residential 
neighborhood of Alcala called La Garena (Figure 4 (d)). 
Each has 2000 by 2000 pixels, where each pixel has been re-
sampled to one meter; therefore, each area represents 2 km 
by 2 km. 

Figure 4 (b) was obtained from the digital cartographic 
database of 1999 producing a mask from the vectorial 
cartography. Figure 4 (c) was obtained from applying the 
SVM algorithm to the SPOT5 imagery and LIDAR data for 
2006.

As stated above, the full scene has 4.000.000 pixels, from 
which 220487 pixels belong to buildings (5.51%) for the 
digital cartography of 1999 (Figure 4 (b)), and 260175 
building pixels (6.50%) for building detection algorithm 
(Figure 4 (c)). There was only an increase of 1% in buildings 
for this area in the seven years period 1999 to 2006). 
Visually, can be observed on the upper right corner that four 
new buildings that were constructed, this belonged to a 
technological centre constructed within the campus in this 
period. The lower left corner corresponds to an old 
residential area so not much change has happened. In 
contrast, the upper left corner corresponds to a new 
residential area and it is where most of the changes have 
happened. Apart from this, little has changed in the campus 
in the period 1999-2006. 

The area in Figure 4 (d) corresponds to a new residential 
area, called La Garena, in the suburb of Alcalá de Henares. 
In the year 1999 (Figure 4 (e)) there were 286549 pixels (to 
discuss pixels is the same as discussing square meters) or 
what is the same 7.16% of the land was dedicated to 
buildings. However in the year 2006 (Figure 4 (f)) there were 
635.598 pixels, or 15.89%. There was an increase of more 
than 7%. 

The images in Figure 4 (c) and Figure 4 (f) were obtained by 
the automatic algorithm SVM. This means that the errors 
committed by the algorithm are translated to the change 
detection process. To determine to what degree this could 
affect the results of the SVM algorithm, a mask of buildings 
for the last area, La Garena, was made editing the LIDAR 
layer of the nDSM by removing the vegetation manually with 
the help of the PNOA aerial imagery for 2006. Terrain visits, 
facilitated because the areas are well known to the authors 
since one (Figure 4 (a)) is the university campus where they 
work; and the other, La Garena, is only a few kilometres 
away. With minimum tuning of a threshold for the LIDAR 
data the manual detection was 670.422 pixels or 16.76%. In 
order to compare the number of pixels detected as buildings 
in the digital cartography with the SVM several 
considerations should be made. 

There were several special cases coming from different 
situations, which were difficult to eradicate. Some came from 
the way the human operator performed the job, such as 
generalizing the cartographic entities, and the other came 
from the parameters to be tuned in the SVM algorithm and 
the LIDAR data itself. See for instance Figure 5 for some of 
these cases. Clearly the mistakes in the digital cartography, 

normal when performed by human operators, could be 
translated to the final results. Figure 5 (a) can be seen as an 
aerial image with vectorial cartography overlying it. Two 
buildings on the right middle side of the image had been 
displaced when the vectorial cartography was done. Now this 
can be seen with the LIDAR in Figure 5 (b). In the final 
count of pixels this could compensate itself automatically, 
since what is lost when the building is outside the vectorial 
delineation, is gained when it is inside. A different problem 
occurred with generalization; some of it can be observed in 
other buildings of this same image in Figure 5 (a) and Figure 
5 (b). But where generalization can be seen more clearly is in 
Figure 5 (c) and (d). The generalization of the central 
buildings will affect the calculation of the increase of 
building construction occurrence during the studied period. 
In this case, the SVM using LIDAR data will detect fewer 
pixels than those obtained by rasterizing the vectorial 
cartography for the same features. 

Another situation was with the buildings that had been 
demolished. For instance, in Figure 5 (e) and (f) can be seen 
two large industrial buildings that were demolished in the 
period 1999-2006. These pixels will be subtracted from the 
final result as it should be. Therefore, this does not pose a 
problem, only that one should be take into account that the 
final quantity is not only the increase in construction but the 
total number also includes the decrease by the demolitions of 
certain buildings. 

                           (a)                                    (b) 

                            (c)                                  (d) 

                            (e)                                  (f) 
Figure 5.  Some Special Points from Cartographic 

Considerations

From our study we deduce that the optimum would have 
been to have two LIDAR layers, one for each date, with a 
good method for removing the vegetation this would be the 
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best method to know how much area has changed due to 
building construction. If possible, to have two LIDAR layers, 
this is the best option as put forward by several authors, Choi 
et al. (2009) compared two individual LIDAR data sets, 
subtracting the two DSMs obtaining not only the changed 
areas but also the types of the changes with a sufficient 
degree of accuracy. Five years before, Thuy et al. (2004) 
proposed to have a building inventory in LIDAR because of 
the quick and reliable updating in the case of an earthquake, 
to detect damaged buildings. As a case study they studied the 
change in buildings with two LIDAR surveying flights in 
1999 and 2004 over Tokyo, Japan. They used a high dense 
LIDAR, even proposed to integrate pulse intensity in the 
processing for future studies. The question is how much 
density is needed for LULC mapping. In our work we have 
used half a point per square meter. This density is not 
difficult to obtain for big areas and we think it gives the 
necessary precision that is needed for LULC. 

It is important to note that when buildings have been 
extracted from the nDSM, what remains is the urban high 
vegetation. To have this information about high vegetation 
would be essential for some application such as urban 
planning and urban ecology. If LIDAR data is available for 
both dates the proposed approach would allow determining 
the changes in high vegetation between both dates. Thanks to 
the multispectral imagery it would permit also to determine 
the changes in low vegetation, such as grass and lawns. 

5. CONCLUSIONS AND FUTURE WORK 

The proposed algorithm gives an approximation of the 
percentage of occurrence for building change between two 
dates; when the buildings on the first date come from a 
vectorial database and the second from spatial and LIDAR 
data. The classification is performed automatically with 
SVM. A previous manual editing can reduce the error in 
classification and consequently improve the detection rate 
change. Today there is a compromise between how much 
manual editing to do and what accuracy is to be expected. 

If LIDAR data is not available for both dates a good option 
would be to use digital cartography for the first date. The 
advantages and disadvantages of this approach have been 
shown. The main conclusion of this paper is to recognize the 
importance of having LIDAR data, if possible, for both dates. 
Subtracting one from the other would give the change in 
buildings, but also in high vegetation. Therefore, it is also 
important to have an algorithm to automatically discriminate 
between vegetation and buildings for the nDSM. Without the 
algorithm it would be necessary to remove vegetation 
manually from both LIDAR layers. 
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