
INTER-ALGORITHM RELATIONSHIPS FOR RETRIEVALS OF FRACTION OF
VEGETATION COVER IN A FRAMEWORK OF LINEAR MIXTURE MODEL

Kenta Obataa and Hiroki Yoshiokaa

aDepartment of Information Science and Technology, Aichi Prefectural University
1522-3 Kumabari, Nagakute, Aichi, Japan

kenta.obata@cis.aichi-pu.ac.jp, yoshioka@ist.aichi-pu.ac.jp
Corresponding author’s E-mail: yoshioka@ist.aichi-pu.ac.jp

KEY WORDS: Fraction of Vegetation Cover (FVC), Linear Mixture Model (LMM), Inter-Algorithm Relationship, Vegetation Index
(VI), Error Propagation, Endmember.

ABSTRACT:

Fraction of vegetation cover (FVC) retrieved from remotely sensed reflectance spectra serves as a useful measure of land cover change.
Since its retrieval algorithms show variations in assumptions of reflectance models and conditions imposed on the modeled spectra, the
retrieved values also show some variations among the algorithms. This study discusses relationships among the FVC retrieval algo-
rithms based on a well-known linear mixture model (LMM). The relationships among the algorithms were derived analytically within a
framework of two-endmember LMM. It was clarified that some of the algorithms are equivalent in the sense that a one-to-one relation-
ship exists among the algorithms. Numerical experiments had been conducted to evaluate the differences in error propagation among
the algorithms induced by uncertainties in measured reflectance (often represented by a signal-to-noise ratio). The results indicate that
the error propagation mechanisms are different in some extent among the algorithms. Moreover, the magnitude of the propagated error
depends on the location of a target reflectance spectrum in the red-NIR reflectance space. Although the reflectance model employed
in this study is quite limited, the fundamental aspects of the derived relationships would contribute to better understanding of the FVC
retrievals.

1 INTRODUCTION

Vegetation plays an important role in various field of studies such
as climatic, hydrologic, and geochemical cycles (Jiang et al., 2006).
Biophysical parameters retrieved from satellite observations such
as vegetation fraction and leaf area index also serve as a useful
measure of land cover change (Jimenéz-Muñoz et al., 2009, Gut-
man and Ignatov, 1998). The focus of this study is a parameter
which represents horizontal density, known as fraction of vegeta-
tion cover (FVC), widely used in application from local to global
scale (Foody and Cox, 1994, Lobell et al., 2001).

Numerous algorithms have been proposed to retrieve FVC from
remotely sensed reflectance spectrum. Those algorithms can be
categorized into three based on level of dependency on numerical
technique; (1) algorithms based on analytical formula (Shimabukuro
and Smith, 1991, Xiao and Moody, 2005), in which numerical
steps only appear in the final stage of retrieval process; (2) al-
gorithms based on numerical model inversion of canopy radia-
tive transfer (Huemmrich, 2001); and (3) algorithms using artifi-
cial intelligence such as neural networks (Carpenter et al., 1999).
User can choose an algorithm based on their needs and objectives
as well as availability of external data source.

In this study, we focus on the algorithms of the first category
under in a framework of linear mixture model (LMM). Further
variations of the algorithms within the same category arise by
the differences in the assumptions and type of the model, the re-
trieved FVC can vary for a single spectrum (Chen et al., 2009).
Several algorithms based on LMM have been utilized to retrieve
FVC, however, relationship of FVC estimation between algo-
rithms have not been clarified. The first objective of this study
is to investigate the relationships among the retrieval algorithms
based on LMM. The second objective is to compare the variances
in FVC among the algorithms by modeling a certain degree of un-
certainty in a target reflectance spectrum (often represented as a
signal-to-noise ratio).

2 BACKGROUND

In a LMM, a measured reflectance spectrum can be represented
by a linear sum of endmember spectra with a set of weights to
be determined. The FVC retrieval algorithms in the framework
of LMM show variations characterized by the choice of variables
for endmember, conditions imposed on the model, and the num-
ber of endmember spectra and spectral bands. Those variations
in the algorithms induce discrepancies in the estimated FVCs.
We proceed our discussion based on a LMM with reflectance and
spectral vegetation index (VI) as the variables. The number of
endmembers and bands are both limited into two to proceed our
discussion analytically. Two types of endmember, vegetation and
non-vegetation, are assumed in this study. For example, the spec-
trum of the target pixel consist of red and NIR bands ρρρm is mod-
eled by a weighted sum of vegetation and non-vegetation end-
member (ρρρv = (ρv,r, ρv,n) and ρρρs = (ρs,r, ρs,n)) as,

ρρρm(ω̂) = ω̂ρρρv + (1 − ω̂)ρρρs, (1)

where ω̂ represents an estimated FVC. Note that the unity con-
straint is assumed in Eq.(1). Below, we introduce three algo-
rithms based on the LMM with two-endmember assumption.

2.1 Algorithm-1: Reflectance-Based LMM

Reflectance-based LMM employs a reflectance spectrum as a end-
member variable, and a set of weights for the endmembers (FVC)
will be determined to minimize the difference between the mod-
eled and measured reflectances (Shimabukuro and Smith, 1991).
In general, root mean square error (RMSE) is used for minimiza-
tion. In this case, the cost function can be considered as the dis-
tance between a target spectrum, ρρρt = (ρt,r, ρt,n), and a mod-
eled spectrum, ρρρm. The FVC estimation, ω̂, is determined to
minimize the distance,

ω̂ =
(ρρρv − ρρρs) · (ρρρt − ρρρs)

(ρρρv − ρρρs) · (ρρρv − ρρρs)
= g1(ρρρt). (2)
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The FVC value retrieved by this algorithm is not the same as the
one retrieved by the algorithms that use a VI as an additional
condition, as explained in the following subsections.

2.2 Algorithm-2: VI-Based LMM

VI-based LMM uses VI as a endmember variable, and weights of
endmember are determined to equate the modeled and measured
VI (Gutman and Ignatov, 1998). Although numerous variations
of the two-band VI (v) have been proposed, their forms can be
represented by the function f ,

v = f(ρρρ)

=
p1ρr + q1ρn + r1

p2ρr + q2ρn + r2
, (3)

where the coefficients pi, qi, and ri are determined by the cho-
sen VI. For example, the normalized difference vegetation index
(NDVI) (Rouse et al., 1974), difference vegetation index (DVI)
(Tucker, 1979), perpendicular vegetation index (PVI) (Richard-
son and Wiegand, 1977), soil-adjusted vegetation index (SAVI)
(Huete, 1988), transformed SAVI (TSAVI) (Baret and Guyot,
1991, Baret et al., 1989), and enhanced VI-2 (EVI2) (Jiang et al.,
2008) can be represented by the above function. The coefficients
for the VIs are summarized in Table.1.

Using the above function, reflectance spectrummeasured by satel-
lite sensor can be transformed to VI (vt) by

vt = f(ρρρt). (4)

Likewise, reflectance spectrum of endmember for vegetation and
non-vegetation surface can be transformed to VI (vv and vs),

vv = f(ρρρv), (5)

vs = f(ρρρs). (6)

The modeled VI by VI-based LMM (vm) can be represented as
linear sum of vv and vs using the weight ω̂,

vm(ω̂) = ω̂vv + (1 − ω̂)vs. (7)

Then ω̂ is determined by imposing a condition such that mod-
eled VI in Eq.(7) is equal to the VI obtained from a measured
spectrum,

vm(ω̂) = vt. (8)

Solving for ω̂, following equation can be obtained,

ω̂ =
vt − vs

vv − vs
. (9)

We define a function g2 to represent the above transformation
from vt to ω̂ as

g2(vt) =
vt − vs

vv − vs
. (10)

A general representation of the composite function becomes

ω̂ = g2(vt) = (g2 ◦ f)(ρρρt). (11)

2.3 Algorithm-3: VI-isoline based LMM

VI-isoline based LMM uses a reflectance as an endmember, and
weights of endmember are determined to equate the measured
and modeled VI, which consist of red and NIR reflectance rep-
resented by a weighted sum of endmember spectra (Zhang et al.,
2006).

VI-isoline based LMM models VI value using the function f
based on a spectrum modeled by the LMM,

vm(ω̂) = f(ρρρm(ω̂)), (12)

where vm represents the modeled VI. ρρρm is the spectrum mod-
eled by the LMM with vegetation and non-vegetation endmem-
ber. Right hand side of Eq.(12) can be rewritten by

vm(ω̂) =
ccc1 · ρρρm(ω̂) + r1

ccc2 · ρρρm(ω̂) + r2
(13)

=
ω̂ccc1 · (ρρρv − ρρρs) + ccc1 · ρρρs + r1

ω̂ccc2 · (ρρρv − ρρρs) + ccc2 · ρρρs + r2
, (14)

where the two vectors represented by ccci are defined as

ccci = (pi, qi), (i = 1, 2). (15)

Then ω̂ is determined by imposing the condition used in the pre-
vious algorithm (VI-based LMM),

vm(ω̂) = vt. (16)

The above equation can be solved for ω̂ to have

ω̂ =
(ccc1 − vtccc2) · ρρρs + r1 − vtr2

(vtccc2 − ccc1) · (ρρρv − ρρρs)
. (17)

We define a function g3 to represent the above transformation
from vt to ω̂ as

g3(vt) =
(ccc1 − vtccc2) · ρρρs + r1 − vtr2

(vtccc2 − ccc1) · (ρρρv − ρρρs)
. (18)

A general form of the above transformation becomes

ω̂ = g3(vt) = (g3 ◦ f)(ρρρt). (19)

3 RELATIONSHIP BETWEEN ALGORITHMS

In this section, we describe the relationship of FVC estimation
among the algorithms. If the relationship between two transfor-
mations is one-to-one (and onto), the FVC estimated by one al-
gorithm can be transformed into the other uniquely. On contrary,
if the relationship is not one-to-one, some degree of uncertainty
would remain in the transformation. To further discuss the re-
lationships, we differentiate the estimated FVC among the three
algorithms by denoting them as ω̂1, ω̂2, and ω̂3 for algorithm-1,
-2, and -3, respectively.

3.1 Relationship Between Algorithm-1 and the Others

FVC estimation by algorithm-1 ω̂1 is computed by the function
g1 for the target spectrum as

ω̂1 = g1(ρρρt). (20)

A single spectrum results in a single value of FVC by function
g1, however, the inverse function g−1 produces multiple spectra
from a single value of FVC. We define a set of reflectance spectra
that result in an identical value of ω̂1 as S1(ω̂1):

S1(ω̂1) = {ρρρ|g1(ρρρ) = ω̂1}. (21)

A set of ω̂2 that can be computed from ρρρ ∈ S1(ω̂1) are then
defined by T1→2(ω̂1) as

T1→2 = {ω̂2| ω̂2 = (g2 ◦ f)(ρρρ), ρρρ ∈ S1(ω̂1)}. (22)
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Table 1: Coefficients of two-band VIs (pi, qi and ri) used in this study.
p1 q1 r1 p2 q2 r2

NDVI −1 1 0 1 1 0
DVI −1 1 0 0 0 1

PVI −a † 1 −b † 0 0 (1 + a)1/2 †

SAVI −1.5 * 1.5 * 0 1 1 0.5 *

TSAVI −a2 † a † −ab † 1 a † −ab + X(1 + a2) †

EVI2 −2.5 2.5 0 2.4 1 1

* We assumed that L = 0.5.
† a and b represents the slope and intercept of a soil line. We also assumed thatX = 0.08 in this study.

Figure 1: The relationship between algorithm-1 and the other two in red-NIR reflectance space, (a) for the relationship between
algorithm-1 and -2, and (b) algorithm-1 and -3. V and S denote the endmember spectra of vegetation and non-vegetation classes. T1

and T2 are target spectra. M1 is a modeled spectrum by algorithm-1 for the two target spectra which are identical in this example. M31

and M32 denote modeled spectra by algorithm-3 for the two targets. The figures illustrate the source of uncertainties between those
algorithms.

Similarly, the relationship among algortithm-1 and -3 can be rep-
resented by defining T1→3 as

T1→3 = {ω̂3| ω̂3 = (g3 ◦ f)(ρρρ), ρρρ ∈ S1(ω̂1)}. (23)

Since these mappings (T1→2 and T1→3) are not one-to-one, the
relationship between ω̂1 and the others (ω̂2 and ω̂3) are not uniquely
determined. The relationships are illustrated in Fig. 1. In the fig-
ure, NDVI is chosen for algorithm-2 and -3 as the endmember
or the conditions to determine FVC. Figure 1a shows the rela-
tionship between algorithm-1 and -2 in the red-NIR reflectance
space. T1 and T2 denote different target spectra, and V and S
denote vegetation and non-vegetation endmembers, respectively.
The variable θ1 and θ2 are the angles between the NDVI-isolines
which go though the target spectra (T1 and T2) and x-axis. T1

and T2 result in an identical FVC value by algorithm-1 because
the closest point (M1) in the model subspace is the same. On the
other hand, since θ1 and θ2 are not the same value, the estimated
FVCs from the two spectra are different. Similarly, the relation-
ship between algorithm-1 and -3 is illustrated in Fig. 1b. Al-
though algorithm-1 produces the same value of FVC from T1 and
T2, the FVCs obtained by algorithm-3 are different illustrated as
the different points (M31 andM32) on one dimensional subspace
spanned between V and S. In consequence, the FVC retrieved
by algorithm-1 is not transformed to a single value of FVC by
algorithm-2 and -3.

3.2 Relationship Between Algorithm-2 and -3

The relationship between these algorithms becomes one-to-one,
that is, results by one algorithm can be transformed to the other
uniquely. The one-to-one relationship can be obtained to relate
formulation of each algorithm using VI computed from measured

reflectance, vt, which exists in both algorithms. FVC estimation
by algorithm-2 can be obtained directly from vt as

ω̂2 = g2(vt), (24)

Likewise, FVC estimation by algorithm can be written as follows,

ω̂3 = g3(vt). (25)

Solving Eq.(24) for vt using the inverse function of g−1
2 gives

vt = g−1
2 (ω̂2). (26)

A relationship between ω̂2 and ω̂3 can be defined as a composite
function by substituting Eq.(26) into Eq.(25),

ω̂3 = (g3 ◦ g−1
2 )(ω̂2). (27)

Similarly, ω̂2 can be written as a function of ω̂3.

ω̂2 = (g2 ◦ g−1
3 )(ω̂3). (28)

Since both g2 and g3 are one-to-one transformations, ω̂2 and ω̂3

in Eq.(27) has one-to-one relationship. (The same goes to Eq.(28)
as well.) The actual form of Eq.(27) becomes

ω̂3 =
(φ + ψ)ω̂2

φω̂2 + ψ
, (29)

where

φ = (vv − vs)ccc2 · (ρρρv − ρρρs) (30a)

ψ = (vsccc2 − ccc1) · (ρρρv − ρρρs). (30b)

Note that this relationship can be obtained if and only if the choice
of VI in both algorithm-2 and -3 are equivalent. Thus the relation-
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Table 2: Summary of φ and ψ for the VIs considered in this study. ρv,r and ρv,n are the red and NIR reflectance of vegetation
endmember, respectively. Likewise, ρs,r and ρs,n are the red and NIR reflectance of non-vegetation endmember, respectively. a
represents a slope of soil line.

φ ψ

NDVI (vv − vs)(ρv,r + ρv,n − ρs,r − ρs,n) (1 + vs)(ρv,r − ρs,r) − (1 − vs)(ρv,n − ρs,n)
DVI 0 ρv,r − ρv,n − ρs,r + ρs,n

PVI 0 a(ρv,r − ρs,r) − ρv,n + ρs,n

SAVI (vv − vs)(ρv,r + ρv,n − ρs,r − ρs,n) (1.5 + vs)(ρv,r − ρs,r) − (1.5 − vs)(ρv,n − ρs,n)
TSAVI (vv − vs)[ρv,r − ρs,r + a(ρv,n − ρs,n)] (a2 + vs)(ρv,r − ρs,r) + a(vs − 1)(ρv,n − ρs,n)
EVI2 (vv − vs)[2.4(ρv,r − ρs,r) + ρv,n − ρs,n] (2.4vs + 2.5)(ρv,r − ρs,r) + (vs − 2.5)(ρv,n − ρs,n)

Figure 2: Illustration of the numerical experiment for FVC errors induced by uncertainties in observed reflectance spectrum. (a) Three
target spectra (A, B, and C,) and endmember spectra of vegetation (filled square) and non-vegetation (empty square) in the reflectance
space. (b) Illustration about error propagation in the FVC retrievals. The two-parameter normal distribution represents measurement
uncertainties which are projected over the modeled subspace (the line between the two endmember spectra).

ship depends on the choice of VI as well as the endmember spec-
tra of vegetation and non-vegetation surfaces. The forms of the
coefficients φ and ψ for several VIs are summarized in Table.2.

4 BIASED FVC AND THEIR RELATIONSHIP
BETWEEN ALGORITHMS INDUCED BY
UNCERTAINTIES OF MEASUREMENTS

4.1 FVC Errors Induced by Uncertainties in an Observed
Reflectance Spectrum

Numerical experiments had been conducted to compare the errors
in retrieved FVC induced by the uncertainties of a target spectrum
among the algorithms (often represented as a signal-to-noise ra-
tio). The algorithms-1 and -3 were compared by employing five
different VIs (NDVI, DVI, SAVI, TSAVI, and EVI2) as a condi-
tion for algorithm-3.

The spectra denoted by the filled and empty squares in the red-
NIR reflectance space (Fig. 2a) represent the vegetation and the
non-vegetation endmembers, respectively, which are connected
by a solid line which represents a model space of the two-endmember
LMM. The two-parameter Gaussian distribution (Fig. 2b) was
assumed as a function of error distribution around the three tar-
gets spectra denoted by A, B, and C in Fig. 2a. The spectra of
the three targets (A, B, and C in Fig. 2a) are A = (0.1, 0.2),
B = (0.06, 0.25), and C = (0.25, 0.33).

The expected values of FVC for the three target spectra are com-
puted based on the error distribution function around the target
spectra for algorithm-1 and -3. Figure 3a is the FVC distribu-
tion by the algorithm-1. The corresponding FVC distributions by

algorithm-3 are plotted in Figs. 3(b-f) with a condition of NDVI,
DVI, SAVI, TSAVI and EVI2, respectively. Those figures clearly
show the differences in the distributions of estimated FVC among
the algorithms. The differences are prominent for the DVI case
(Fig. 3c): The distributions for the target spectra of A and C be-
come in a different order than the other cases. (The distribution
for the spectrumA is smaller than that for C in (c), while the dis-
tribution for the spectrum C becomes smaller than that for A in
the others.) These results also imply that the variance in FVC dis-
tribution will be different among the choice of VI in algorithm-3
(as a condition for FVC determination.) To investigate this point,
we further conducted a numerical experiment explained in the
next subsection.

4.2 Relationship of Biased FVC Between Algorithms

The relationships of error propagation on estimated FVCs among
the algorithms are examined numerically. In the previous subsec-
tion we assumed two-parameter Gaussian distribution as a proba-
bility distribution function (PDF) to represent uncertainty around
a target spectrum. In this subsection, we assumed one-parameter
Gaussian distribution along a line which goes through a target
spectrum as illustrated in Fig. 4. The center of the Gaussian
distribution is located at the target spectrum in the red-NIR re-
flectance space. The line of distribution (red solid line in Fig.
4) which goes through the point of the target spectrum in the re-
flectance space had been rotated 180 degrees around the point
of the target spectrum. The variance of FVC distribution by the
three different algorithms (algorithm-1, algorithm-3 with NDVI
as a condition, and algorithm-3 with SAVI as a condition) were
computed at each angle. Thus, we obtained three set of variances
as a function of the angle.
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Figure 3: Distribution of the FVC estimations for the three target spectra which include uncertainties. Figure (a) show the results of
FVC distributions by algorithm-1. Figures (b) through (f) are the results by algorithm-3 using NDVI, DVI, SAVI, TSAVI, and EVI2,
respectively.

Figure 4: Illustration of the numerical experiments to examine
the relationships of the variances in FVC among the algorithms.
The variances of the FVC estimations were obtained by project-
ing the one-parameter normal distribution onto the model sub-
space spanned by the two endmember spectra. The axis of the
normal distribution of the target spectra (red line) were rotated
180 degrees around the average spectrum.

Figures 5(a-c) show the relationships of variance among the three
algorithms. From those figures the variance relationships depend
on the choice of the algorithms as well as the VI as a condition
for algorithm-3. The results also indicate that the variance rela-
tionships depends on the target spectra (denoted by A, B, and
C.)

In general, each algorithm has advantage and disadvantage over

the other algorithms regarding the robustness against uncertain-
ties in an observed reflectance spectrum. The relationships among
the algorithm (strength and weakness) depends on the location of
the target spectra in the red-NIR reflectance space. When a tar-
get spectrum is located in lower region of the reflectance space
relative to the model subspace (the line connecting the two end-
member spectra), the parallel based LMM is less influenced by
the uncertainties of measurement (hence robust to it) than the
angle based LMM. On contrary, when a target spectrum is lo-
cated in upper region of the reflectance space relative to the model
subspace, the angle based LMM is more robust than the parallel
based LMM.

5 DISCUSSION AND CONCLUSIONS

The relationships among the FVC retrieval algorithms were de-
rived in a framework of two-endmember LMM. One to one rela-
tionships was successfully derived between the algorithms using
the same vegetation index as a condition of FVC determination.
This analytical investigation imply the difference in error of FVC
induced by an uncertainty in a measurement.

The error propagation from a measured spectrum to FVC estima-
tions by LMM based retrieval algorithms was numerically simu-
lated under a two-endmember assumption. It was shown that the
amplitudes of biases strongly depend on a target reflectance spec-
trum (represented as a position in the red-NIR reflectance space).
The results indicate that both average and standard deviation of
the FVC estimations are different among the algorithms for an
identical target spectrum (the probability distribution function of
the target spectrum). It implies that much caution is needed to
choose an algorithm and its condition for the FVC determina-
tions. The results also imply that the variance in FVC estimation
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Figure 5: Relationships of the FVC variances among the algorithms for the three targets. The relationship between (a) algoirthm-1 and
algorithm-3 using NDVI; (b) algorithm-1 and algorithm-3 using SAVI; and (c) algorithm-3 using NDVI and algorithm-3 using SAVI.

show a systematic difference among the algorithms. We then in-
vestigate the relationship of variance in FVC estimations among
the retrieval algorithms to clarify the relationships of variance
among the algorithms. The results clearly show the existence of
such relationships among the algorithms.

In this study we employed the simplest model among the LMMs
to proceed the investigation analytically. Although the results
obtained in this study cannot be applicable to more complicated
cases (e.g. multiple-endmember LMM), the findings must have
some degree of generality which would serve as a theoretical ba-
sis in some extent for the estimation of vegetation fraction from
satellite images.
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