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ABSTRACT:
 
Regression models for 24-h typhoon intensity forecast based on the Statistical Typhoon Intensity Prediction System (STIPS) are 
developed by adding two new predictors: surface latent heat flux taken from the third release of the Objectively Analyzed Air-sea 
Fluxes and inner-core rain rate obtained from Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis. 
The microwave optimally interpolated SST produced by Remote Sensing Systems is used to estimate maximum potential intensity. 
The models predictors include environmental information from National Center for Environmental Prediction Global Forecasting 
System final analysis and best track from Japan Meteorological Agency Regional Specialized Meteorological Center Tokyo. Results 
from a stepwise linear regression model show that the inclusion of these two satellite-based predictors provides 1%–3% reduction in 
overall intensity changes. To take into account the non-linearity of the forecast, a neural network (NN) model is developed. Results 
from the NN show a 5%–11% reduction of the mean absolute forecast error.   
 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION

While the forecast of TC track has improved steadily over the 
past decades, the forecast of TC intensification remains a major 
challenge. An evaluation of the National Hurricane Center and 
Joint Typhoon Warning Center (JTWC) operational tropical 
cyclone intensity forecasts for the three major northern 
hemisphere tropical cyclone basins (Atlantic, eastern North 
Pacific, and western North Pacific) for the past two decades 
indicates almost no improvement in intensity forecasting while 
the track forecasts have seem steady improvement (DeMaria et 
al. 2007). 

Latent heat transfer at the air-sea interface, which can be 
quantified by surface latent heat flux (SLHF), and latent heat 
release occurring within the inner-core region in the atmosphere, 
which could be indicated by inner-core rain rate (IRR), are two 
major heat sources for TC intensification. Gao and Chiu (2010) 
showed that there are statistical differences in the SLHF and 
IRR field associated with rapidly intensifying (RI) and non-RI 
TCs, suggesting that these parameters have the potential to 
enhance forecast skills. This study reports on the impact of 
SLHF and IRR on 24-h intensity prediction of TCs over the 
western North Pacific. 

 
2.  DATASETS 

Intensity and location information of each TC are take from 
best track data produced by Japan Meteorological Agency 
Regional Specialized Meteorological Center Tokyo (RSMC 
Tokyo). This post analysis best track data contain 6-h location, 
minimum central pressure, and 10-min maximum sustained 
wind speed (MWS) of all TCs over the western North Pacific 
including the South China Sea. Environmental data are derived 
from National Centers for Environmental Prediction (NCEP) 
Global Forecasting System (GFS) final (FNL) gridded analysis 
(Yang et al. 2006) at 1.0° × 1.0° and 6-h resolution. The 0.25 

degree every 3 hourly rainfall data are taken from Tropical 
Rainfall Measuring Mission (TRMM) Multisatellite 
Precipitation Analysis (TMPA) (Huffman et al. 2007). Daily 
gridded SLHF data at 1° × 1° resolution are obtained from the 
third release of the Objectively Analyzed Air-sea Fluxes 
(OAFlux) (Yu et al. 2008).  The microwave (MW) Optimally 
Interpolated (OI) daily SST (Wentz et al. 2000) at 0.25° × 0.25° 
resolution produced by Remote Sensing Systems together with 
best track data is utilized to estimate maximum potential 
intensity (MPI). Data for the period 2000-2008 are analyzed. 
This period represents an intersection of all available data used 
in this study. 
 

3.  LINEAR REGRESSION MODEL 

Multiple linear regression models are used to predict over-water 
24-h intensity (i.e. MWS) change (predictand, DELV) from the 
initial forecast time. This model is based on STIPS with the 
addition of surface evaporation and inner core rainfall and is 
termed Statistical Typhoon Intensity Prediction including 
surface Evaporation and inner core Rainfall (STIPER).  
 
3.1 Model formulation 

Table 1 summarizes the predictors (including 16 original and 
two new satellite-based predictors, SLHF and IRR) used in this 
study. The computation of the traditional climatological and 
environmental predictors follows the approach in the Statistical 
Typhoon Intensity Prediction System (STIPS) developed by 
Knaff et al. (2005). All of the environmental predictors are 
obtained using a “perfect prog” Approach (Kalnay, 2003). Both 
the NCEP GFS FNL analysis and the actual TC best track (by 
the RSMC Tokyo) are used to develop the models. The 
predictors that are evaluated at the beginning of the forecast 
period are static, such as those predictors related to climatology 
and persistence; and predictors that are averaged along the track  
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Table 1. Potential climatological, environmental, and satellite-based predictors. The predictors that are evaluated at the beginning of 
the forecast period are static (S), and the predictors that are averaged along storm track from the initial time to the forecast time are 
time dependent (T). 

Predictor Description Static (S) or time 
dependent (T) 

Climatology and persistence 
MWS0 Initial maximum wind speed S 
DMWS Maximum wind speed during the past 12 h S 
JDAY Absolute value of (Julian day – 248) S 
SPD 
LAT 
LON 

Strom translational speed 
Latitude of storm center 
Longitude of storm center 

S 
S 
S 

Environmental 
POT Maximum potential intensity based on Eq. (1) minus initial 

maximum wind speed T 

RHLO Area-averaged (200–800 km) relative humidity at 850–700 hPa T 
RHHI Area-averaged (200–800 km) relative humidity at 500–300 hPa T 
U200 Area-averaged (200–800 km) zonal wind at 200 hPa T 
T200 Area-averaged (200–800 km) temperature at 200 hPa T 
�200 Area-averaged (0–1000 km) divergence at 200 hPa T 
REFC Relative eddy flux convergence within 600 km at 200 hPa T 
SHR Area-averaged (200–800 km) 200–850-hPa wind shear T 
USHR Area-averaged (200–800 km) 200–850-hPa zonal wind shear T 
�850 Area-averaged (0–1000 km) 850-hPa relative vorticity T 
Satellite-based 
SLHF Area-averaged (5° × 5° box) surface latent heat flux S 
IRR Area-averaged (0-100 km) inner-core rain rate S 

 
Table 2.  Model and verification. STIPER predictor normalized regression coefficients with explained variances (R2) statistics at the 
bottom in different verification years. The predictors are listed on the left side of the table and the verification years are listed at the 
top. N is the number of dependent samples used to develop the equation shown in parentheses. The lower four rows show the 
verification results for these models in intensity change (kt over 24 hours) for the year. M is the number of samples for verification. 

Year (N) 
 Predictor 

2000 
(1063) 

2001 
(1040) 

2002 
(1005) 

2003 
(1041) 

2004 
(977) 

2005 
(1047) 

2006 
(1053) 

2007 
(1083) 

2008 
(1115) 

1) MWS0 –0.05 –0.07 –0.08 –0.02 –0.06 –0.05 –0.02 –0.07 –0.04 
2) DMWS 0.28 0.31 0.30 0.30 0.29 0.30 0.29 0.28 0.28 
3) JDAY –0.12 –0.10 –0.12 –0.11 –0.12 –0.10 –0.11 –0.12 –0.11 
4) LAT –0.11 –0.09 –0.10 –0.09 –0.13 –0.09 –0.09 –0.13 –0.11 
5) POT 0.40 0.37 0.37 0.42 0.38 0.38 0.41 0.37 0.40 
6) RHLO 0.07 0.04 0.05 0.04 0.05 0.04 0.05 0.06 0.06 
7) RHHI –0.01 0.01 0.02 0.03 0.00 0.04 0.00 –0.01 –0.01 
8) SHR –0.17 –0.18 –0.17 –0.18 –0.18 –0.16 –0.17 –0.18 –0.18 
9) SLHF 0.06 0.06 0.05 0.03 0.04 0.05 0.06 0.05 0.05 
10) IRR 0.06 0.08 0.07 0.08 0.05 0.08 0.07 0.07 0.06 
R2 54% 53% 54% 53% 55% 53% 53% 53% 53% 
M 115 138 173 137 201 131 125 95 63 
CLIPER 
BASE 
STIPER 

7.0(38%) 
6.6(44%) 
6.5(44%) 

6.6(46%) 
6.4(53%) 
6.5(52%) 

7.5(40%) 
6.8(46%) 
6.9(47%) 

7.1(51%) 
6.9(54%) 
6.8(54%) 

8.1(38%) 
7.6(44%) 
7.4(46%) 

7.7(49%) 
7.6(55%) 
7.7(54%) 

7.6(51%) 
7.2(55%) 
7.2(55%) 

9.9(44%) 
8.6(56%) 
8.5(56%) 

8.7(56%) 
8.2(60%) 
8.1(62%) 

 
 
of the storm from the initial observation to the forecast time are 
time dependent, providing the mean conditions for the storm, 
such as those predictors related to SST, moisture and wind 
fields. 

The MPI is defined as the upper bound of TC intensity for a 
given atmospheric and oceanic thermal conditions (Camp and 
Montgomery 2001). We use the MWSST in each 0.5°C SST 
interval to fit this exponential MPI function described in Eq. (1) 
and determine the coefficients. The coefficients are given by A 
= 23.75 kt, B = 91.9 kt, C = 0.09 °C–1 and T0 = 30.0 °C.  

 
)( 0TTCBeAMPI ���                       (1) 

 

SLHF and IRR predictors are computed as the average within 
a box of 5° × 5° and within a radius of 100 km centered at TC 
position, respectively. The averaging areas optimize their 
correlation coefficients with intensity and intensity changes, as 
also suggested in previous studies (Chang et al., 1994; Rodgers 
et al., 1994). For the operational purpose, SLHF and RR are 
deemed to be static predictors, since it is impossible to acquire 
remote sensed information in “future”. 

A linear stepwise regression procedure is used to select 
parameters from the potential predictor pool. A 99% statistical 
significance level based on an F test (e.g., Wilks 2006) is the 
threshold for an individual predictor to be added initially in the 
model. Once selected, a predictor can only be removed if its 
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significance level becomes less than 98% after the 
addition/removal of another predictor.  

Three regression models are developed: a) control (BASE), 
which uses the 16 STIPS original predictors to select significant 
predictors and create a base regression model, b) STIPER 
which is STIPS plus SLHF and IRR, and c) CLIPER, which is 
generally a baseline to evaluate the skill of operational models. 
A model can be considered to produce skilful intensity forecast 
if it has smaller error than CLIPER.  

Assuming the independence of annual statistics, the samples 
in one year are used for verification and the samples in the other 
years are used for model development. As a result, for each 
CLIPER, BASE and STIPER model there are totally nine 
regression equations, which may contain different sets of 
significant predictors due to different training samples. All of 
the predictors identified for any regression equation are 
included in the final group of predictors. The final CLIPER, 
BASE and STIPER models are created using the final group of 
predictors. The predictand as well as the predictors are 
normalized by subtracting their means and dividing by their 
standard deviations before regression, the resulting coefficients 
can be used to compare the relative contribution of each 
predictor directly.  
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Figure 1. The mean absolute errors (MAE, kt) of four 
regression models (CLIPER, BASE, STIPER, and NN) for 
different verification years. 

 
3.2  Model results 

Table 2 lists the normalized coefficients associated with each 
predictor for each STIPER forecast equation. N is the number 
of samples used to develop the regression equations. The 
STIPER models contain 10 important predictors: initial 
intensity (MWS0), previous 12-h intensity change (DMWS), 
absolute value of Julian day minus 248 (JDAY), initial latitude 
of the storm (LAT), potential (POT), 850–700-hPa average 
relative humidity (RHLO), 500–300-hPa average relative 
humidity (RHHI), 200 – 850 hPa wind shear (SHR), SLHF and 
IRR. 

The lower rows in Table 2 shows mean absolute errors with 
explained variances (R2) of CLIPER, BASE and STIPER 
forecasts for different verification years. Both the BASE and 
STIPER models perform better than CLIPER. Among the nine 
verification cases, STIPER has the lowest mean absolute error 
and the highest R2 for 6 cases, with a MAE 1%–3% smaller 
than the STIPS models.  Hence, STIPER show moderate skill 
for TC intensity forecast and the inclusion of satellite-based 

predictors SLHF and IRR provides 1%–3% improvement 
compared with the model without satellite information. 
 

4.  NEURAL NETWORK MODEL 

The nonlinear response of the linear regression model suggests 
the use of non-linear models can be beneficial. A neural 
network (NN) model using back-propagation algorithm 
(Rumelhart et al. 1986) is developed using the same predictors 
from the linear regression model STIPER.  

Figure 1 shows the mean absolute errors of the NN model as 
well as three linear regression models (i.e., CLIPER, BASE, 
and STIPER). The mean absolute error reduction of NN models 
is from 5% to 11% compared to STIPER models for different 
years. The NN model is clearly better than the STIPER model 
in predicting varying intensity changes. 

 
5.  SUMMARY AND DISCUSSION 

A new maximum potential intensity equation is derived using 
remote-sensed sea surface temperature data with high temporal 
and spatial resolution. The inclusion of satellite-based SLHF 
and IRR in a linear regression model (STIPER) provides a 1%–
3% improvement in 24-h typhoon intensity forecasting 
compared to a multiple linear regression model (BASE). 
Analysis of the intensity forecast categories shows the largest 
improvement of the STIPER model occurs for those rapidly 
intensifying storms. Verifications of the model results show 
non-linear responses of the linear regression model. To account 
for the non-linear response, a NN model is developed using the 
same predictors as the STIPER model. The NN show a 5%–
11% reduction in mean absolute error relative to the STIPER 
model. The forecast errors with rapid intensifying cases of the 
NN model are reduced further relative to the STIPER model.  
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