THEMATIC INFORMATION EXTRACTION IN A NEURAL NETWORK CLASSIFICATION OF MULTI-SENSOR DATA
INCLUDING MICROWAVE PHASE INFORMATION.
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Abstract

Microwave data (ERS-1 and ERS-2) and optical data (SPOT-XS) were used for the classification of an area with different
land use classes. Classifications were executed for the optical data alone and for a combination of the three data sets. Two
classifiers, one based on the maximum likelihood algorithm and the other on a neural network approach, were applied. From
the ERS tandem mode SAR data a coherence map was created and included in the classifications in the form of an
additional dimension in the feature space. The accuracy and reliability of the four classifications are presented and the
results discussed.

1. INTRODUCTION where high correlations exist an accurate Digital Terrain
Model can be realized.  On the other hand, height
Optical and microwave data can provide complementary information cannot be extracted in areas with low
information about objects that cover the Earth surface. correlation. So the quality of the products is characterized
Optical data contains the information about the reflection of by the “interferometric correlation”, which is-a measure of
the solar energy in selected parts (bands) of the spectrum. the variance of the interferometric phase estimate. The
The image elements (pixels) of optical sensors can be seen amount of correlation is a function of the system noise, the
as vectors of which the components represent the  volume scattering, baseline configuration and temporal
reflection in the different bands. Image elements of  change. Consequently, the interferometric (de)correlation
microwave data consist of two components, the magnitude itself contains significant thematic information that can be
and the phase which are stored as complex numbers in two useful for several other applications.
"layers". If optical and microwave data sets are correctly In SAR images, the magnitude and the phase of each
combined, the resulting product will convey more element are the coherent summations of the back scattering
information and could prove to be more useful then either and phase of the individual scatterers inside a resolution
image alone. cell. The variation in the overall phase and the overall
magnitude of cells with equal cover type will appear as
The information contained in the multi-sensor data can be speckle. However two images taken from the same position
extracted visually or by computer supported methods. In at the same moment will be identical (neglecting system
computer analysis, a suitable classifier is needed to handle noise). If two images are taken from different positions
the optical and microwave sensor data. Since the nature of and/or instants of time, variations in pixels representing the
the two data sources is different, which results in different same surface cell will appear.
frequency distributions of the data, it makes sense to use If the structure or chemical composition of the ground-cover
the neural network approach to analyze this data. Neural changes, then the amount of temporal decorrelation will
network classifiers are able to handle the multi-nature data  vary. This variation can contain information about the type
from different sources. of ground-cover and/or the situation in which it exists.
Influence on temporal changes, in case of space borne
Phase information of microwave image data is mainly used  sensor-systems, can be minimized by a high temporal
in the field of interferometry. Interferometric processing of resolution of the system or by a combination of two
SAR data from space combines images from two passes of "identical" systems in a tandem mode. The ERS-1 and
a sensor system or combines the data from two sensor ERS-2 systems satisfy this last requirement.
systems in tandem mode. This process derives precise
measurements of the differences in path length to the two Correlation between the data from a cell is expressed in
sensor positions. The main output of interferometry of SAR terms of the summated phase and intensity of the resulting
data is topographic information related to terrain heights or ~ back scatter. A cell is considered to contain a set of
the monitoring of positional changes of the Earth surface. A individual back scatterers distributed over the cell. The
strong relation exists between the quality of these products amount of energy back scattered by the individual
and the correlation of the complex data sets. In those areas scatterers can be equal or can vary and the positional
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distribution of them are regular or irregular.

If the scatterers are regularly distributed and if they have the
same scatter characteristic, the cell is called homogeneous.
Small changes in structure or in chemical composition of the
ground-cover in such a cell will not change the phase if the
imaging geometry did not change.

In a non homogeneous cell the dominant scatterers will
have the highest influence on the phase therefore variation
in the position of dominance will vary the phase
significantly.

Apart from temporal changes, decorrelation can also be a
consequence of an improper (too large) distance (base)
between the two sensors during the data acquisition. To
reduce the baseline decorrelation a careful selection of the
orbits of the sensor system(s) is required. For the extraction
of topographic and thematic information different constraints
are involved. If a data pair is used to extract spatial and/or
height information by means of an interferogram, the base-
line between the two orbits should range from 200 to1000m
to realize an acceptable height resolution. In case of the
extraction of thematic information, the decorrelation related
to the base line should be minimized. If the decorrelation
related to the baseline is zero, the remaining decorrelation
is caused by temporal changes in composition and structure
of the ground cover within the cells .

In practice a zero baseline will not exist, but with a short
baseline almost no baseline decorrelation exists. So
differences that appear can be considered to be caused by
temporal decorrelation. The data can be used as an
additional dimension in the feature space for the combined
image analysis. '

1.1 Neural Network classification

Neural networks are based on a model of the human brain,
using certain concepts of its basic structure. The network
consists of many simple processing elements (neurons)
ordered in layers. These layers are separated into an input,
one or more hidden layers and an output layer. The
elements in the hidden layer(s) are connected with all or
with some elements in the next/previous hidden , input or
output layer. In an operational neural network, these
connections are weighted in a training stage. The training of
the network is based on a set of vectors of which the class
membership is known. The neural network classifiers are
able to learn from sample patterns. These classifiers do not
need a particular frequency distribution as required by some
conventional statistical classifiers.

1.2 SAR Coherence image

For the creation of a coherence map, two SAR complex
data sets have to be registered and the coherence
computed. Coherence is a measure for the relation of the
phase information of corresponding signals. To reduce large
fluctuations in the map the coherence is computed in a
window.

According to Schwabish and Winter there are several
factors which decrease the coherence:

thermal noise

- temporal changes in atmospheric conditions

- phase errors due to processing

- temporal changes in the object phase

- different viewing positions
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2. DATA PREPARATION

The "ground truth" data was collected in the field and their
positions indicated on a topographic map. The SPOT image
was georeferenced and geocoded to the geometry of that
topographic map. Before the classifications were performed,
the data sets (SPOT and Coherence Image) were
registered. Further a neural net was initiated and trained.

2.1 Data description
For the experiment a data set is selected consisting of an
optical image (SPOT-XS) and a tandem of SAR images
(ERS-1, ERS2) in single look complex format (SLC).

In

Figure 1: SPCT XS band 3

figure 1, band 3 of the Spot image is shown. The SPOT
image is acquired on 02 August 1995, the ERS-1 image
(figure 2) on 19 August 1995 and the ERS-2 (figure 3) on 20
August 1995. Because of the small time interval between
the acquisition dates it is expected that the types of ground
cover of the sensed area have not changed dramatically.
The weather conditions during the data acquisition of the
two ERS images were perfect for the experiment; without
rain but with different wind force and direction.

The baseline of the two images has a horizontal component
of 38 meters and a vertical component of 82 meters

Figure 2: ERS-1 Itensnty image
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Figure 3: ERS-2 Inktensity irha

(information provided by ESA). The lengths of these
components satisfy the wish to have a limited baseline
decorrelation.

The window that is selected from the images reflects an
area in the central part of the Netherlands. The area
consists of a relative new polder with large agriculture fields,
a developed moor land including reed fields, an area with
small agriculture fields on the "old" land and parcels with
forest. The old and the new land are separated by a lake. In
the area there are no relief differences, it is a very flat
terrain.

2.2 Field data collection

In order to classify the images, samples were taken that are
supposed to be representative of the various types of land
cover, and, at the same time, in order to check the accuracy
and reliability of the classification another independent set
of samples was acquired. Field data was acquired a few
weeks later than the image acquisition dates. The eight
classes that are selected did not change between the
acquisition date and the field check. Only some grass field
may have been cut in that period and some stubble fields
plowed.

The following classes are recognized :
1. Bare saoil.

. Sugar beets.

. Stubbles.

. Forest.

. Maize.

. Grass.

. Water.

. Reed.

WO~ O WD

2.3 SPOT georeferencing

The Spot image is georeferenced using the ILWIS image
processing software applying an affine transformation
including a nearest neighbor "interpolation". The overall
accuracy, expressed in RMSE, of the reference points used
for the creation of the transformation polygons was less
than 1 pixel.

2.4 ERS1/2 intensity images
From the SLC images, intensity images are created. The

one with the highest number of clearly visible objects (in this
case the ERS-1) is selected to support the registration of
the coherence map to the SPOT image.

2.5 Coherence map creation

The coherence map (figure 4) is created using software
developed at DLR in Oberpfaffenhofen, Germany. The
interferometric software requires some information which is
available in the leader file.

Figure 4: Coherence mép

For an accurate registration of two SLC data sets it is
necessary to measure the shifts between the images in
azimuth and range direction which is done in the intensity
images. These shifts are introduced in the data processing
for- a coarse registration. The WGS84 is chosen as
reference system for the resampling of the second scene.
To inspect the coarse registration, the fringes and the
coherence map are calculated from the coarse registered
images. If the registered images cannot produce a sufficient
number of fringes, the coarse registration has to be
repeated with more accurate shifts. The next step is the fine
registration of the images. This is one of the most important
steps during the whole data processing because it is the
basis for the quality of the later derived interferometric
products. The master image remains unchanged while the
slave image is fitted to the master. To reduce unwanted
variation in the coherence map, a window of 20 azimuth * 2
range elements is used for the computation of the
correlation. Based on this filtered map the interferogram is
calculated, i.e., the resulting fringes are also corrected
under assumption that the Earth is flat.

2.6 Coherence map registration

The coherence map and the ERS-1 image have apart from
minor shifts, which are caused by the slightly different orbits
of the ERS-1 and the ERS-2, the same geometry. So
registration of the coherence map and ERS-1 image will
follow the same transformation steps. The following steps
are performed, partly with ILWIS and partly with PCl's
EASI/PACE.

- resample the intensity image to an azimuth resolution of
20 meter by averaging five columns elements into one.
- select the sub image of the ERS-1 that covers
approximately the same area as the SPOT sub image.
- transform the image from slant range into ground range
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and resample to 20*20 meter resolution.

- flip-over the image in line direction to create an almost
west-east image. This step is required in case of images
acquired in descending orbit.

- apply an affine transformation to register the ERS-1
image to the SPOT image.

- extract form the coherence map the same window as is
used in ERS-1.

- execute the same steps, with the same parameters for
the transformations, on the coherence map as are used
for the registration of the ERS-1 image.

3. CLASSIFICATION

3.1 MLH classification

Optical data

For the classification of the optical SPOT-XS data all the
bands (3) were used. The classification was performed with
the ILWIS software. The positions of the training samples
were located in the image by visual inspection, i.e. relating
the position of SPOT samples in the topographic map and
the corresponding positions on the false color composite
map. Since the Maximum Likelihood classifier was applied,
the numbers of training samples representing a class were
taken into consideration because of the validity of the
statistical estimates (mean and variance-covariance matrix
). Per class, samples with a size of more than 100 pixels
were taken. In the classification process a threshold, in the
Mahanalobis distance, of 14 was used. Those pixels that
were not classified applying this threshold were considered
to belong to the NULL-class. In table 1 the confusion matrix
and the corresponding accuracies and reliabilities are
shown.

Optical and radar data

The same parameters and sample set are used for the
classification of the SPOT image plus the coherence map.
Only the feature space dimension is increased by one.

In table 2 the result of the classification is shown.

3.2 NN classification

Mask

Neural network classifications in general do not recognize
automatically a NULL class. That means that all pixels are
appointed to one of the classes the network was trained for.
So also pixels that belong to a not sampled land use will be
classified but to a wrong class. To avoid this, a mask was
created using the NULL class of the maximum likelihood
classification.

Optical data

For the investigation the EASI/PACE software of PCI
(version 5.3) is used. A three layer network of fully
interconnected processing units is composed. In the input
layer one node represents one input channel. For the
optical data alone three nodes are used. The output layer
comprises 8 units, one for each class. The size of the single
hidden layer is varied. Benediktsson et al. (1990) Civco
(1991) used both 3 and 4 layer networks. They found that
using a four layer network did not improve the classification
accuracy. The momentum and learning rate were set at 0.9
and 0.1 respectively. The PCl programs use a back-

propagation network which is trained by means of the
Generalized Delta Rule. This involves two phases. In the
first phase the weights for the inter-unit connections are
initialized to random values in the range of -0.5 to 0.5. The
input data is presented and propagated forward through the
network. Within each processing unit the combined input
contained is modified by the sigmoid function before it is
passed to other connecting processing units. The second
phase is a backward pass through the network, adjusting
the weights to reduce the error between the actual and the
desired output until it is acceptable or is stabilized. During
the classification of the image, each pixel in the output layer
is allocated to the class associated with the unit with the
highest activation level. After the classification, the
previously created mask is used to create a NULL class that
is identical to the one of the MLH classification. In table 3
the result of the classification is shown.

Optical and radar data

The same parameters and sample set are used for the
classification of the SPOT image plus the coherence map.
Only the feature space dimension is increased by one; the
first layer contains four nodes.

In table 4 the result of the classification is shown.

4. CONCLUSIONS

The overall accuracy of the four classifications does not
vary significantly (about 2%). Also the variance of the
average accuracy and reliability is low (about 4%). The
main reason for the low variances is the almost perfect
classification of the classes 1 (bare soil), 2 (sugar beets), 3
(stubbles), 4 (forest) and 7 (water) in all classifications. Only
the accuracy and the reliability of the classes 5 (maize), 6
(grass) and 8 (reed) are improved. In these classes a
significant difference exists between the result of the neural
network (NN) classifier on the SPOT data plus the
coherence map and the result of the maximum likelihood
(MLH) classification of the SPOT data alone.

For some classes, which have a high accuracy in the
classification of the SPOT data alone, the accuracy is
decreased in the classification of the combined data. This
decrease is caused by outlyers in the feature space of the
combined data set. The outlyers increase the number of
elements appointed to the NULL-class.

From this experiment we can conclude that the input of a
coherence map improves the result of the classifications.
However it does not give a clear answer which of the two
classifiers gives the best result.
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Figure 5: Neural Network classification optical and radar data
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e ==
1 189 0 0 0 0 0 0 0 0 1.00
2 0 365 0 0 0 3 0 0 3 0.98
3 0 0 251 0 0 0 0 0 0 1.00
4 0 0 0 221 0 0 0 29 3 0.87
5 0 0 0 0 46 1 0 128 0 0.26
6 0 1 0 0 114 326 0 a7 0 0.67
7 0 0 0 0 0 0 414 0 0 1.00
8 0 0 0 0 57 1 0 29 0 0.33

e e e +-———=

REL| 1.00 1.00 1.00 1.00 0.21 0.98 1.00 0.12

average accuracy = 76.52 %

average reliability = 78.98 %

overall accuracy = 82.63 %

Table 1: Confusion matrix Maximum likelihood optical data

1 2 3 4 5 6 7 8 wuncl | ACC

o e e e e +————=

1 168 0 0 0 0 0 0 0 21 0.89
2 0 364 0 0 0 3 0 0 4 0.98
3 0 0 250 0 0 0 0 0 1 1.00
4 0 0 Q 206 0] 0 0 25 22 0.81
5 0 0 0 Q 82 17 0 76 0 0.47
6 0 0 0 0 88 362 0 34 4 0.74
7 0 0 0 0 0 Q 411 0 3 0.99
3 0 0 0 0 45 4 Q 38 0 0.44
e Fo———-

REL | 1.00 1.00 1.00 1.00 0.38 0.94 1.00 0.22

average accuracy = 79.00 %

average reliability = 81.74 %

overall accuracy = 84.43 %

Table 2: Confusion matrix Maximum likelihood optical and radar data

1 2 3 4 5 6 7 8 uncl | ACC
e — e — o

1 126 0 0 0 0 0 63 0 0 0.67
2 0 364 0 0 0 4 0 0 3 0.98
3 0 0 251 0 0 o] 0 0 Q 1.00
4 0 0 0 227 1 1 5 16 3 0.90
5 1 0 0 0 32 4 1 137 0 0.18
6 0 0 0 0 81 393 0 14 0 0.81
7 0 0 0 0 0 0 414 0 0 1.00
8 1 0 0 0 28 23 Q 35 0 0.40
e e e o

REL| 0.98 1.00 1.00 1.00 0.23 0.92 0.86 0.17

average accuracy = 74.19 %

average reliability = 77.06 %

overall accuracy = 82.68 %

Table 3: Confuson matrix Neural Network optical data

1 2 3 4 5 6 7 8 uncl | AcC
e =

1 168 0 0 0 0 0 0 0 21 0.89
2 0 299 0 0 22 46 0 0 4 0.81
3 0 0 250 0 0 0 0 0 1 1.00
4 0 Q Q 216 0 0 0 15 22 0.85
5 o] 0 0 Q 73 18 0 84 0 0.42
6 0 0 1 1 70 382 0 30 4 0.78
7 0 0 0 2 0 Q 409 0 3. 0.99
8 0 0 0 2 35 10 0 40 0 0.46
U = B D .

average accuracy = 77.40 %
average reliability = 80.16 %
overall accuracy = 82.45 %

Table 4: Confusion matrix Neural Network optical and radar data
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