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ABSTRACT
Digital elevation models are essential tools in many glaciological studies and especially for mass balance studies,

structural geology modeling and advance remote sensing and geophysical processing. However, due to the hostile

climate and inaccessible environment of the Antarctic continent, there are insufficient elevation databases and their

quality is poor. In this paper, we analysis the spatial distribution of error in the different DEMs that exists at the

Antarctica Transantarctic Mountains. Based on this analysis, we investigate the various methods to combine elevation

models with different properties (resolution, horizontal and vertical accuracy). There are five major data sets in the

project area:  The USGS 1:50000 maps which, covers the north west part of the project area and have 50 meter contour

line interval; USGS 1:250000, taken from the Antarctic Digital Database, which, covers all our project area and have

200 meter contour line interval; satellite radar altimetry data derived from ERS-1 with 5 km resolution; airborne Radio-

Echo Sounding profile data at the north east part of the project collected by Scott Polar Research Institute and field

surveying control points collected by USGS.

Our final goal was to compile all those elevation models into one uniform grid elevation model with the highest

accuracy and resolution that can be obtained. Many techniques and algorithm’s exists for integrating database, some are

based on interpolation methods in the boundary zone, other techniques perform simple data merging and apply various

filtering functions to make the transition smoother. We review those procedures and compare their properties and apply

some of them in our study. Last, we propose a method to combine the different DEM into one set using universal

Kriging concept. In this process, we compute a covariance matrix for every data set individually and a cross covariance

of the individual data set in the predication computation.

1 INTRODUCTION

1.1 The Tamara Project

The Tamara project is an international  research  aimed at integrating new aeromagnetic data,  acquired by a cooperative

U.S.-German field campaign, with satellite imagery, geological and structural mapping, and existing ground-based,

airborne and marine geophysical data. With this comprehensive database we hope to answer outstanding questions

about the evolution of the Transantarctic Mountains (TAM) - West Antarctic rift- in southern Victoria Land.  The

foundation of this database is a Digital elevation model (DEM) which is an essential tools in many glaciological studies

and especially for magnetic and gravity modeling. It is important to use a data set which will have the best accuracy and

with the highest resolution. However, due to the hostile climate and inaccessibility environment of the Antarctic

continent, there are insufficient elevation databases and their quality is poor. Consequently, we need to apply methods

to combine and integrate the different DEM's which were acquired from different sources with different spatial

properties.

1.2 Review of data fusion methods

Many methods have been proposed for integrating multiple data sources. For a comprehensive review on data fusion we

refer the interested reader to Abidy and Gonzales (1992). Here we mention  only a few methods that are important for

understanding the procedures described in this paper. Rapp (1984) examines various techniques; that can be used to

combine satellite gravity field information with terrestrial gravimetry. He is using spherical harmonic expansions

(Fourier analysis) to interpolate the data and weighted least squares to solve the augmented observation equations and to

compute the combined interpolation function coefficients. Hahn and Samadzadegan (1999) transform the data using
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wavelet decomposition that yields a better local interpolation. (compared with spherical functions). The merging

process of the two DTMs takes place on the same wavelet function scale by least squares fit. Honikel (1999) fuses

digital elevation models derived from optical sensor (SPOT images) and SAR interferometry. She uses the correlation

coefficient of each data, i.e. the coefficient generated by the automatic DEM program or image matching system  for the

optical sensor and the coefficient which was computed from the interferometry phase unwrapping process. The

mathematical model for this method is given in (1) and represent a simplified approach to the least squares  approach.

(1)

Where:

: resulting local height estimate.

: local height of the filtered (f) optical (opt) and SAR DEM.

 ρ  : Correlation coefficient derived for the appropriate data. 

Liu (1999) uses a GIS approach for identification and exchange of data in regions, where the height measurement of

one of the contributing sensors fails . We used a combined approach which incorporate Liu (1999) procedure for

merging  overlapping DEM's  but also uses a least squares approach to fuse DEM's one into the other. Consequently  we

designed a two step process for the integration of data:

1. merging overlapping data sets to produce the primary DEM – in our case the 1:250k data from the ADD and 1:50k

data from USGS.

2. fusion of the base DEM with  more accurate elevation data in specific areas, to refine the primary DEM and

produce a more accurate and with higher resolution DEM.

In the subsequent sections, we describe the data processing procedures; section 2 describe the different data sources and

the evaluation methods used to estimate their accuracy; section 3 describes the merging technique; and section 4

describes a new statistical algorithm to blend two DEMs and improve elevation models on a smooth area.

2 DIGITAL ELEVATION MODELS ANALYSIS

2.1 Data sources

The main sources of DEM’S in the project area  are (see also

figure 1):

1. The Antarctic Digital Database, ADD – sheets ST 57-60

and ST53-56, which were created from the 1:250,000 USGS

Antarctica Reconnaissance Series maps. These maps were

mostly compiled from US Navy tricamera aerial photographs

taken in the 60’s. (ADD  1998). The digital contour line map

has a 200m contour interval, providing a mean vertical

accuracy of 100m (according to the USGS map standards the

accuracy equals half of the contour interval). However, since

those maps are part of the Antarctica Reconnaissance Series

it may not comply with USGS standards and the accuracy of

the data should be verified.

2. The USGS 1:50K digital data: which covers the north

west part of the project area, and has a 50 meter contour line

interval. Again we should examine the accuracy of those data

sets.

3. Ice Altimetry data - surface elevations of the Antarctic

ice sheets derived from ERS-1 altimetry data, as processed

by the Oceans and Ice branch of the Laboratory for Hydrospheric Physics of NASA/GSFC. The grid points have a

nominal spacing of 5 km.  The gridded elevations are derived from the data by a weighted fit of a bi-quadratic function

(bi-linear where data distribution is poor) to the elevation data that fall within a certain radius of the grid location.  This

data was reported [Bamber 94] to have an error in the order of a few meters for elevations on slopes smaller then 0.65°.

This error comprises of random errors, originates from the satellite retracking error, and bias, from the geographically

correlated orbit error and uncertainties in the geoid. For regions with slope greater then 0.65° the elevation estimates are

not reliable i.e. have very large error, due to large  footprint of the radar altimeter.

4. Airborne Radio-Echo sounding profiles data at the north east part of the project area collected by Technical

University of Denmark and Scott Polar Research institute, University of Cambridge, U.K using an airborne Radio- Echo

Sounding  equipment operating at 60 and 300 MHz [ Drewry 1982 ]. The absolute  accuracy of elevation is about 30m,

However, the relative elevation accuracy is likely to be better than 10m; Data were collected on  10 subparallel lines 10-

15km apart. Terrain clearance and ice thickness data measured at interval of 1.1 km.
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Figure 1: Tamara project, the different DEMs.
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5. GPS and traverse surveying points. Collected from many different sources and projects but mainly from USGS

field campaigns. The accuracy of those points is a few centimeters, however due to the difficult climate conditions  the

Antarctic area have a paucity of control points.

2.2 Data analysis

It was important to evaluate the accuracy of our data and to get familiarity with the problematic areas. One way to

estimate DEM is to compare with another independent and more accurate data. In our research, we use bilinear

interpolator to compute the height of a given point from the DEM i.e. each point is computed from the closest four grid

points. We did the following comparisons:

• USGS 1:250 DEM Vs. GPS points : 63 points,  Mean difference: -158.49 m, Standard Deviation of difference:

122.65 m; Maximum: 182.89; Minimum: - 447.00.  Those points were measured in the rough terrain area with rock

outcrops of the Royal Society range and Mount Discovery in which the aerial photogrammetric methods are more

accurate ( in contrary to the flat uniformly white Antarctic Plateaus), On the one hand, lack of texture on the ice

make Photogrammetric interpretation and measurement difficult on the other hand  in on a very  rough and

mountainous topography small error in the horizontal position can cause big error in the vertical direction i.e.

elevation measurement.

• USGS 1:50 DEM Vs. GPS points :  35 points; Mean: 53.30; Standard Deviation: 23.87. again in an area with rough

Topography.

• Ice Altimetry data (ERS-1 data set) Vs USGS 1:250 DEM;  General statistics in all our project area; 3590 points

Mean: 180.10 m and Standard Deviation: 318.27 m. This very high error is due to the very rough area (rapid and

big changes of height e.g. from 0 m to 3268 m across 35km) However ;In a flat area we get for 1463 points  Mean:

71.25 m and Standard Deviation: 74.73 m; in an  area with high slopes  indeed the elevation estimate are not

reliable e.g.  408 points Mean: 372.28 m Standard Deviation: 466.60 m.

• USGS 1:250K DEM Vs Airborne Radio-Echo sounding profiles : We have 1674 measured points; Mean: 20.11 m

Standard Deviation: 77.97. Maximum error is: 570.00 Minimum error is: -305.00

• USGS 1:250 Vs USGS 1:50K; Statistical analyses of the difference grid gave us a Root Mean Square Error of

140m and expectation of 32m ( i.e. 32m datum shift so the 250k data has a higher datum) Those result’s were

anticipated since the interpolation process introduce interpolation error and the Antarctica Reconnaissance Series

accuracy’s are  worse  then the  USGS normal mapping standards.

3 MERGING THE 50K AND 250K USGS DATA

We used the original contour line coverage of the 1:50,000

and 1:250,000  USGS map and produce a grid from them.  In

the previous section we estimated the height errors of our data

but we also need to check for irregular patterns in our data

Consequently, we subtracted (overlay operation) the two data

sets to get a difference grid. Close examination of this grid

shows no significant trend or pattern which means that we can

combine the two sets without any datum transformation. ( see

figure 2). After clipping the area of the 50k data from the

250k we choose to merge the two dataset using Arc/Info

TOPOGRID command. The Topogrid command is based on

Hutchinson (1996)  interpolation method. The interpolation

procedure has been designed to take advantage of the types of

input data (in our case contour lines). This method uses an

iterative finite difference interpolation technique. It is

optimized to have the computational efficiency of ‘local’

interpolation methods such as inverse distance weighted

interpolation, without losing the surface continuity of global

interpolation methods such as kriging and splines. It is

essentially a discretised thin plate spline technique, where the

roughness penalty has been modified to allow the fitted DEM to follow abrupt changes in terrain, such as streams and

ridges. In order to improve data continuity at sutures we could either filter our data at the merge line or give a data free

zone for the interpolation. We choose the second option and thus we cut 1km from the 250k contours as a transition

zone. With this transition zone the Topogrid interpolation was able to merge the two dataset and produce a seamless

elevation grid at a resolution of 100 m ( this grid resolution is a little high in the areas where we have only 1:250k data

but we had to have a higher resolution grid for a SAR rectification process).

Figure 2: A difference grid between the USGS Antarctic

DEM'S
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4 STATISTICAL ALGORITHEMS TO BLEND MULTI-SENSOR DEM'S

It was important  to further improve our primary DEM to include also local DEM's that are more accurate i.e. Airborne

Radio-Echo sounding profiles and the Ice Altimetry data in the flat areas. However, since the grid resolution of those

DEM is small, we can not cut and replace the DEM as we did with the 1:50k DEM. Consequently, we propose to use a

Least Squares Collocation ( which is equivalent to simple Kriging with a trend) to statistically interpolate and blend the

DEM's. We can use this statistical model since our area varies slowly (the Antarctica glacial plateaus). The basic

mathematical model of our data is based on  Least square collocation according to Moritz 1970. The measurement

vector y (elevations) is equal to a random signal (on which we have statistical prior information) added to a linear trend

vector A ξ and added to random  vector of noise e (error) :

                                                    (2)

Where:

y is the observations at known points;

A ξ  is a trend that we want to detect, we used in our project 2d polynomial to describe the trend and compute our

design matrix A.

X a random signal that we want to detect with zero expectation and known variance.

e  – noise

p is the weight matrix of the noise elements; Q0 is Cofactor matrix of the random signal.

and the basic solutions of collocation are the estimated trend coefficients at a point:

                (3)

and the predicted random signal at a required point

                                     (4)

where Q0P is the cofactor matrix computed between the required point and the other data points.

We need to combine two data sets and thus we will split the mathematical model of (2) into two equations as follows:

        (5)

Figure 3A: 1:250k map and 1:50K before the merge

process. The red line are SAR images frames.
Figure 3B: The two map seamlessly combined. The red

line are SAR images frames.
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Figure 3B: The two map seamlessly combined. The red

line are SAR images frames.

Yaron A. Felus



121International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B1. Amsterdam 2000.

11
ˆ;

~ ξ
P

X

)()()( hCOCh −=γ

in model (5) we assume no correlation between our noise element of different data sets C(e1,e2)=0 the signal elements in

contrast have correlation which should be computed. The derivation of this combined data set least square collection

solution is done by plugging the appropriate matrices into equation (3) and (4) and using matrix arithmetic's especially

the formula for the inverse of a 2*2 matrix, we will skip this derivation and present the solution: (a similar derivation

can be found at Helmut & Hans (1978)

   (6)

Where:

Accordingly in this sequential or stepwise formula we first compute the trend 
1

ξ̂ due to the first data set and then we

add the new data set effect. The sequential form for the random parameter is :

         (7)

As mentioned before,               are the solution of the interpolation process done on the first data set, with the

introduction of the second data set we uses formulas (6) and (7) to update our interpolation. Obviously,  we can use this

sequential process with as many data set as we need as long as we compute the appropriate covariance matrix for each

data set and the covariance with all the others. We compute our covariance function from the data in an empirical way

and using:

     (8)

C is the covariance, β is the expectation, s and s' denotes the spatial position, h=s-s' is the displacement vector or lag.

This is under the conditions of ergodicity  and Isotropy, Cressie (1993) proves that variogram estimation is to be

preferred over covariogram estimation. The main reasons for that are:

When our process is only a second order stationary (not intrinsically stationary) then both the variogram estimator and

covariogram estimator are biased. However, the variogram bias is of smaller order.

If our data has trend contamination then it has “disastrous effect” on attempts to estimate the covariogram while on the

variogram it has a “small upward shift”.

Since we assume second order stationarity we can write the relationship (9)

Note that C(0) =σ2
 , the variance of the random function  and we can estimate the semivariogram by:

           (10)

Using  (8) and (10) we computed the semivariogram in figure 3a. 3b. 3c.

As suggested by Cressie 93 our semivariograms and covariagrams includes

only half of the maximum possible lags and only those lags possessing more

then 30 pairs. Note that for the mutual data set covariogram/ Semivariograms

function we used a smaller sample of the data so we need to fit a function

over a smaller range of values ( shorter y,x-Axis)
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Following the generation of experimental semivariogram in the above figures; we used an interactive method to find the

initial function and then used weighted least squares to fit the exact corresponding semivariogram functions. We should

mention that to compute the sample semivariogram, we choose area in out data that have no visible trend ( the selection

was made using the contour line map). We were able to fit a Gaussian function to all the data sets that will also give us

the required sill for equation (9) -C(0).

 The USGS fitted Gaussian function has the following parameters: Nugget=g=366; Range=r= 50330; Sill=s= 90559.7;

The Radio Echo Sounding Data fitted Gaussian Variance function has the parameters of: Nugget=g=130; Range=r=

61295; Sill=s= 35621 and the mutual data sets fitted Gaussian function has a Nugget=g= 500; Range=r= 88243; Sill=s=

20000. With those variogram models we followed the process of equation (6) and (7) to grid our data at 100 meter

resolution  and produce a grid with a better accuracy.

5 CONCLUSIONS AND FURTHER RESEARCH.

We have designed a complete schema to integrate DEM's acquired from different sources, and we demonstrated the

execution of this process in an actual problematic case study area - The tranantarctic mountains in Antarctica. We

divide the integration process into two separate classes of algorithms, namely; merging of overlapping data sets and

fusion of one data set in the other. For the first technique, we suggest an interpolation zone of 1km, this means, that we

smooth and decrease the effect of a 140 m variance over a distance 1KM ( more then 10 times the variance is a good

rule of thumb).  For the fusion process, we propose to use a geostatistical interpolation - Least square collocation - it is

not common to see statistical interpolations when using elevation models, those methods are being used extensively for

potential fields,  for geological analysis and spatial environmental examination. We decided to use those methods in our

area since we assume a smooth behavior of the DEM over the ice topography of the Antarctic plateaus. More over, our

interpolation algorithm  is designed to work with small local subset  or support which make it more suitable to deal with

moderately varying data such as elevations model. The main advantage of the geostatistical mathematical scheme is that

it fits a unique covariance/semivariogram model  which encompass the measurement errors and the intrinsic data

relationship in it,  based on this analysis the algorithm interpolates the data. This is in contrast with other methods,

which assume a certain data behavior in advance. Moreover, using geostatistics, we can get an estimate for our

interpolation dispersion, The mathematical development of the sequential dispersion equation is long but follows the

same line of arguments as the sequential least squares collocations. Further research is needed to evaluate the results of

this model and compare it's performance with respect to other models.
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