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ABSTRACT 
 
Landscapes are Complex Systems, which by their very nature necessitate a multiscale approach in their moni-
toring, modeling and management. To assess such broad extents, remote sensing technology is the primary 
provider of landscape sized data sets, and while tremendous progress has been made over the last thirty years 
in terms of improved resolution, data availability, and public awareness, the vast majority of remote sensing 
analytical applications still rely on basic image processing concepts: in particular, per-pixel classification in 
multi-dimensional feature space. In this paper we describe and compare two technically and theoretically 
different image processing approaches, both of which facilitate multiscale pattern analysis, exploration, and 
the linking of landscape components based on methods that derive spatially-explicit multiscale contextual 
information from a single resolution of remote sensing imagery. Furthermore, we suggest how both methods 
may be integrated for improved results.  
 
 
1  BACKGROUND 
 
To fully exploit the information content of high-resolution (H-res) images, methodologies are required which 
go beyond traditional statistical analysis and the classification of individual pixels. In particular, Blaschke 
and Strobl (2001) argue that classic per-pixel classification approaches do not explicitly make use of the 
spatial characteristics inherent within the image. For example, in H-res images it is extremely likely that 
neighboring pixels belong to the same land-cover class as the pixel under consideration. Consequently, 
Blaschke and Strobl and others (Hay et al. 1994, 2001a, b, Schiewe et al. 2001) argue for the classification of 
homogeneous groups of pixels that reflect real-world objects of interest, and the use of algorithms to deline-
ate such ‘image-objects’ based on contextual image information i.e., image-texture (Hay et al 1996, 1997) or 
fractal dimensions. 

Like the landscape itself, defining patches that comprise the landscape is not a self-evident task. In-
stead, patches must be defined relative to a given situation. For example, from a timber management per-
spective, a patch may correspond to a forest stand; however, the stand may not function as a patch from a 
particular organism’s perspective. From an ecological perspective, patches represent relatively discrete areas 
(spatial domain) or periods (temporal domain) of relatively homogeneous environmental conditions. Their 
boundaries are distinguished from their surroundings by discontinuities in environmental character states of 
magnitudes that are perceived by, or relevant to, the organism or ecological phenomenon under considera-
tion. From an organism-centered view, patches may be defined as environmental units where habitat quality 
differs more between them than within them. As a result, a necessary, yet non-trivial task in landscape analy-
sis involves delineating appropriate and meaningful patches. Difficulty in this task exists because there are 
an infinite number of solutions for defining lines/polygons (i.e., patches) on a relatively continuous surface. 
While, manual interpretation of patches is common and well established, as monitoring needs increase, re-
sults tends to be expensive and require more time to produce. Furthermore, maps generated by different in-
terpreters often provide limited – or poorly comparable - results.  
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Based on these concepts, the underlying goal of this short paper is to report our findings regarding our efforts 
to combine and integrate components of the fractal net evolution approach (FNEA) with the Scale-Space 
(SS) approach for analyzing and classifying a H-res IKONOS satellite image. More specifically, we intend to 
evaluate whether Scale-Space can be used to automatically detect the most relevant/appropriate levels of 
information (i.e., patches, scales) required by the multi-scale segmentation approach used in FNEA.  
 
2  MATERIAL AND METHODS 
 
2.1. Study site 
 
The data used in the FNEA study is a 1000x1000 pixel sub-image (4m resolution) of an 11-km2 IKONOS 
image that was acquired in August 2001. Geographically, it represents a portion of the highly fragmented 
agro-forested landscape typical of the Haut Saint-Laurent region of southwest Quebec, Canada. Due to the 
memory and computational demands required by SS, the image used in the SS study portion, represents a 
500x500 pixel sub-section from the same near-infra red image used for FNEA analysis. In addition, one 
hundred individual SS levels we generated and evaluated. 
 
2.2. Fractal Net Evolution Approach (FNEA)  
 
The fractal net evolution approach incorporates an object-oriented framework and image segmentation tech-
niques. In particular, it utilizes fuzzy set theory to extract the objects of interest, at the scale of interest, by 
segmenting images simultaneously at both fine and coarse scales, then building image semantics between 
levels and their elements. The principal challenge and flexibility of this multiscale approach lies in defining 
the aggregation rules for the lower level entities, which result in improved image classifications, and a new 
framework for integrating semantic rules in image processing. Contrary to neural net classifiers, a semantic 
network based on fuzzy set theory is not a black box, instead it allows for a transparency of all classification 
steps. Although, FNEA is already embedded in a commercial software environment, its usability is not op-
erational as long as a theoretical framework is not provided and users have to find useful segmentation levels 
in a ‘trial and error’ style. 

Since its recent introduced by Baatz and Schäpe (2000), it has been applied in various research pro-
jects in Europe (Blaschke et al 2000, Blaschke and Strobl 2001, Schiewe et al 2001). For example, Blaschke 
et al. (2001) reported on the applicability of FNEA to distinguish different phases of bush and shrub en-
croachment in an old pasture-dominated landscape in Germany. This involved a multi-scale delineation of 
images and image semantics that incorporated image-structure and -texture characteristics. It was found that 
they could distinguish three levels of delineation appropriate for three different key species, which resulted 
in the construction of a hierarchical network of image-objects, and semantic rules between these levels. Ad-
ditional studies have demonstrated the potential of this multi-scale segmentation approach, where the results 
of unsupervised delineations of landscape objects are surprisingly appealing. The ‘realistic’ look of the re-
sulting patches of forests, pastures, fields and built-up areas has motivated several agencies in Europe to 
evaluate the applicability of the approach and the commercial software environment. Experienced image 
interpreters have already expressed their concern of becoming obsolete one day. 

In a remote sensing scene, image information may be considered as fractal in nature. That is, struc-
tures typically appear on different scales in an image simultaneously. However, to extract meaningful image 
regions the user has to take into account the scale of the problem that is to be solved and the type of image 
data. With the FNEA, users are required to aim for different scale levels by hypothesizing that almost all 
attributes of image structure – color, texture or form – are essentially scale-dependent. This is different from 
many other approaches, which do not require any user-defined parameters (i.e., region growing algorithms, 
watershed algorithms, multi-fractal based segmentation, Markov random fields, etc). In FNEA, defining a 
specific level of analysis leads to objects at a certain scale. This means, an image-object can easily be 10 
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times the size of a small object but it is very unlikely that (at the same semantic level of consideration) an 
image object is 1000 times the size of another object.  

FNEA starts with single a single pixel and a pairwise comparison of its neighbors with the aim to 
minimize the resulting summed heterogeneity. The common solution for this pairwise cluster problem is 
described as global mutual best fitting. In fact, global mutual best fitting is the strongest constraint for the 
optimization problem and it reduces heterogeneity primarily over the scene following a pure quantitative 
criterion. However, there is a significant disadvantage to global mutual best fitting. It does not use the dis-
tributed treatment order and – in connection with a heterogeneity definition for color - builds initial segments 
in regions with a low spectral variance. This leads to an uneven growth of image-objects over a scene and to 
an unbalance between regions of high and low spectral variance. Local mutual best fitting always performs 
the most homogeneous merge in the local vicinity following the gradient of best fitting. An iterative heuristic 
optimization procedure aims to get the lowest possible overall heterogeneity across an image. The basis for 
this is the degree of difference between two regions. As this difference decreases, the fit of the two regions is 
said to be closer. These differences are optimized in a heuristic process by comparing the attributes of the 
regions (Baatz and Schäpe 2000). That is, given a certain feature space, two image-objects are considered 
similar when they are near to each other in this feature space. For a d-dimensional feature space the hetero-
geneity h is described as : 
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Examples for appropriate object features are, for instance, mean spectral values or texture features, such as 
the variance of spectral values. These distances can be further standardized by the standard deviation of the 
feature in each dimension using Equation 2. 
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Equation 3 defines the homogeneity of two adjacent regions by describing the difference of heterogeneity h 
of the two regions before (h1 and h2) and after a virtual merge (hm). Given an appropriate definition of het-
erogeneity for a single region, the growth of heterogeneity in a merge should be minimized. There are differ-
ent possibilities for describing the change of heterogeneity hdiff before and after a virtual merge – but they 
are beyond the scope of this paper. 
 
Equation 3    hdiff  = hm – (h1 + h2)/2 
 
We note that this attribute allows us to distinguish between two types of objects with similar mean reflec-
tance values but different ‘within-patch heterogeneity’. One application based on this type of heterogeneity 
was described by Blaschke et al (2001) utilizing ‘mean spectral difference between all sub-objects” as one 
manifestation of heterogeneity applied to pastures and conservation aspects of changes in a cultural heritage 
landscape in central Germany.  
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2.3. Scale space 
 
 The second multiscale approach is composed of two principle components. The first is referred to as Linear 
Scale-Space (Lindeberg 1994). Linear Scale-space (SS) is an uncommitted framework for early visual opera-
tions that was developed by the computer vision community to automatically analyze real-world structures at 
multiple scales – specifically, when there is no a priori information about these structures, or the appropriate 
scale(s) for their analysis (see Hay et al, 2001a for a detailed 
description). Its basic premise is that a multi-scale representation 
of a signal (such as a remote sensing image of a landscape) is an 
ordered set of derived signals showing structures at coarser 
scales that constitute simplifications of corresponding structures 
at finer scales. 

In practice, Gaussian filters are applied to an image at a range of 
kernel sizes resulting in a scale-space cube or ‘stack’, where 
each layer in the stack represents convolution at a specific scale 
(Figure 1). The use of Gaussian filters is essential to SS theory 
as they satisfy necessary conditions for an uncommitted frame-
work. These include linearity (i.e., no knowledge, no model, no 
memory), spatial shift invariance (i.e., no preferred location), 
isotropy (i.e., no preferred orientation) and scale invariance (i.e., 
no preferred size or scale). In addition, a Gaussian kernel satis-
fies the linear diffusion equation, thus Gaussian smoothing can 
be considered as the diffusion of the grey-level intensity over 
scale (t), instead of time. 

 The second SS component is referred to as Scale-Space Blob 
Feature Detection (Hay et al 2001a). The primary objective of 
this non-linear approach is to link structures at different scales in scale-space, to higher-order objects called 
‘scale-space blobs’, and to extract significant features based on their appearance and persistence over scales. 
The main features that arise at each scale within a stack are smooth regions, that are brighter or darker than 
the background and which stand out from their surrounding. These regions are referred to as ‘grey-level 
blobs’ (Figure 2a). When blobs are evaluated as a volumetric structure within a stack, it becomes apparent 
that some structures visually persist through scale, while others disappear (Figure 1). Thus, an important 
premise of SS is that blobs-like structures which persist in scale-space, are likely candidates to correspond to 
significant structures in the image, and thus in the landscape. 

 

 
Figure 1. Colorized Grey-level stack 

   

 

 

  

 
 

Figure 2a. 2D Grey-level blob (t 20) 
 

    2b. 3D Grey-level blobs (t 20)   2c. Binary blob (t 20) 
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In simple terms, grey-level blobs at each scale in the stack are treated as objects with extent both in 2D space 
(x, y) and in grey-level (z-axis) – thus 3D. Grey-level blob delineation may best be defined with a watershed 
analogy. At each scale in the stack, the image function of all blobs may be considered as a flooded 3D land-
scape (i.e., a watershed, see Figure 2b). As the water level gradually sinks, peaks will appear. At some in-
stance, two different peaks become connected. The corresponding ‘connected’ elevation levels are called the 
‘base level’ of the blob. They are used for delimiting the 2D spatial extent or ‘region of support’ of each blob 
- defined as a binary blob (Figure 2c). 2D binary blobs at all scales are then combined within a new stack to 
create 3D hyper-blobs (Figure 3a). Within a single hyper-blob there are four primary types of visible struc-
tures or ‘bifurcation events’: annihilations (A), merges (M), splits (S), and creations (C) (Figure 3b).  

The ability to define these SS-events is a critical component of SS, as scales between bifurcations are linked 
together forming the lifetime (Ltn) and structure of individual SS-blobs. Next, the integrated (4D) volume (x, 
y, z, t) of each individual SS-blobs is defined. These resulting 4D volumes are then ranked, and an arbitrary 
number of significant SS-blobs are defined, from which the scale (t) representing the maximum 3D grey-
level blob volume (x, y, z) of each hyper-blob is extracted. From these layers the 2D spatial support (i.e., 
binary blob) is identified and related back to the corresponding structures in the image for further examina-
tion (Figure 3c). Thus, based on the underlying initial premise, 4D scale-space blobs are simplified to 3D 
grey-level blobs, which are further simplified to their 2D support region (x, y), and then to their correspond-
ing ‘significant’ real-world objects in the original image.  

At present, our SS analysis is performed exclusively within a raster environment. We are currently working 
on converting raster blob layers to vector datasets with their accompanying attribute lists that will include, 
the identification number and rank of all 2D blobs, their scale of expression, their spatial boundary (i.e., 
polygon dimensions), and the area of each ranked blob-polygon. As a result, we hypothesize that the scale of 
expression of significant scale-space blobs may be used as early visual operators to automatically define and 
or refine the aggregation semantics of the FNEA. In generic terms this refinement process is referred to as 
‘feature localization’ (Lindeberg 1999). 
 
3  RESULTS AND DISCUSSION 
 
Applying FNEA to the IKONOS data resulted in several levels, which are expressed by their ‘object scales’. 
These object scales represent the mean heterogeneity the user allows for the resulting objects at a certain 
level, and corresponds to the mean object size. From the many levels produced, three levels were selected for 
further analysis and classification of the image. Visual interpretation (Figure 4 a-c) proves all three levels to 
be meaningful at their respective levels. Fig. 4b shows an image scale of 60 and corresponds very well to the 

 

 
 

  

 

Figure 3a. Hyper-blob stack  3b. Idealized hyper-blob  3c.Ranked blobs overlaid study site 
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target level of forest stands, agricultural parcels and sealed surfaces. The latter are problematic because roads 
can be very long and can reach an extreme perimeter-area ratio. Due to the applied heuristics and fractal 
theory, these segments cannot be too long or they are sometimes cut off. This is one of the reasons for a level 
‘above” including the related super-objects. In Figure 4, the landscape is primarily segmented into objects 
that already include some generalization. As forest patches get larger, they include small forest gaps and 
different textures related to tree heights, etc. Although this level (i.e., 60) is relatively coarse, clearly differ-
ent land cover classes are still separated; however, within an‘agriculture’ super-class, fields start to grow 
together to form larger patches. Although the object scale 60 was chosen to best fit the target level, a much 
finer segmentation (Figure 4a) is very important for the classification. While, this level can be regarded as 
being ‘over segmented’, the information of the ‘within’ patch heterogeneity allows the expression of texture 
based on sub-objects. By incorporating single entities within patches such as groups of shrubs, hedges or 
forest gaps, and their corresponding information about size, shape, color or relative location within their 
super-objects, the texture of an image-object is expressed more explicitly than using moving window style 
texture filters.  

 The most innovative aspect beyond a simple improvement of image classification is the potential to differ-
entiate different ‘object-classes’ within the same image ‘on-demand’ for different applications. Contrary to 
the static view of a map, all forest areas could be treated as relatively homogeneous areas (although in reality 
they aren’t) and open grasslands can be explored in further detail (see Blaschke et al 2001) or vice versa.  
Figure 5 illustrates three ways to express texture. In 5a, the standard deviation per object is calculated for 

each band and the average of all 4 bands is shown. The darker areas represent high values and include most 
forest stands; while in 5b and 5c, the results are based on sub-objects. The general patterns of 5a, b and c 
coincide with minor exceptions. In ongoing studies, we are specifically interested in these resulting differ-
ences i.e., between ‘traditional’ ways to express texture, based primarily on the spectral variation of pixels 
and the spectral differences of sub-objects within super-objects (i.e., 5b and c). Initial results suggest further 
research on expressing the ‘graininess’ of sub-objects.  

Figure 6 shows a certain level of generalization similar to what human interpreters intuitively incorporate in 
their work. In 6a, single trees within fields are subsumed within the object ‘agricultural area’. If the single 
tree is of interest, it still exists at the level below and is logically a sub-object with information relating to its 
size, shape, relative position within its super-object, and spectral differences to its neighbors. Figure 6b 
shows that a large object can border to small objects like hedgerows. This does not contradict the hypothesis 
that all resulting objects have to be a similar dimension. In reality, a large and relatively uniform forest patch 
or a large field may exist next to a small yet distinct patch like a road. As long as the resulting heterogeneity 
per object is within a certain range, an object can even have 500 times the size of the smallest objects. Nor-

Figure 5. Analysis examples, object parameter 60, sub objects stem from object parameter 20. 
 

 
 

 

 

 

 

5a.  Avg-std of all bands per object 5b. No# of sub object at level below 5c. Relative area of sub object 
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mal region growing segmentation algorithms were compared in Blaschke et al (2000) and did not result in 
similar semantic objects.  
    

 
 
4  CONCLUSIONS 
 
In this paper, we describe, apply and compare two technically and theoretically different multiscale ap-
proaches with a common theme: The focus on intrinsic pattern and their exploration at different scales simul-
taneously. The key characteristic of these multiscale approaches is their evolution beyond individual pixel 
analysis to analyzing the explicit contextual structure of landscape components. In this work, we have begun 
to examine the sensitivity of both methodologies to landscape structure, and provide a case study were both 
approaches are compared. While the methodological comparison is technically interesting, the overall goal of 
this study is to contribute to a more coherent understanding of landscape structures, their representation in 
images, and their linking through scales. Both authors independently started from paradigms that most re-
mote sensing and GIS methodologies do not readily support; that is, the representation of geographic entities 
at a variety of scales and levels of abstraction, simultaneously within a single image. Both approaches incor-
porate a bottom-up approach designed to convert lower level observational data into higher-level geographic 
entities, which - ideally - can then be related to the morphological processes that formed them. Our current 
results suggest that we can directly link both approaches by exporting SS-blob vectors (and their associated 
attributes) and using them as apriori information in the FNEA.  
 
 
REFERENCES 
 
 
Baatz, M. and Schäpe, A., 2000. Multiresolution Segmentation: an optimization approach for high quality 

multi-scale image segmentation. In: Strobl, J. and Blaschke, T. (Eds.): Angewandte Geogr. 
Informationsverarbeitung XII, Wichmann, Heidelberg, pp. 12-23. 

Blaschke, T. and Strobl, J., 2001.  What’s wrong with pixels? Some recent developments interfacing remote 
sensing and GIS.  GIS – Zeitschrift für Geoinformationssysteme 6/2001, pp. 12-17. 

Blaschke, T., Lang, S., Lorup, E., Strobl, J., Zeil, P., 2000. Object-oriented image processing in an integrated 
GIS/remote sensing environment and perspectives for environmental applications. In: Cremers, A. 
and Greve, K. (eds.): Environmental Information for Planning, Politics and the Public. Metropolis, 
Marburg, vol 2, pp. 555-570. 

Blaschke, T., Conradi, M., Lang, S., 2001. Multi-scale image analysis for ecological monitoring of heteroge-
neous, small structured landscapes. Proceedings of SPIE, Toulouse. 

 

 

 

 
 

   Figure 6a. Close up of fields at an object scale 140          6b. Close up of forest stands at an object scale 140 
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