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ABSTRACT: 
 
Lidar techniques represent a new and fruitful approach in the determination of digital surface models. One of the goals in processing 
this data is to set up filtering methods allowing to automatically extract the ground and the features (buildings, vegetation,…) 
superimposed on the terrain itself. In our work the emphasis is posed on the first topic. The method implemented took advantage of 
the use of spline functions regularized by means of Tychonov functional in a least squares approach. The DSM pixels have been 
classified in order to previously detect the edges of the non terrain features; the second step is the identification of all the pixels 
corresponding to the ground,  by means of a region growing  algorithm  and its correction. By a new  interpolation only made from  
the ground pixel we finally get to the digital terrain model. In the paper the processing methodology  is discussed and a first large 
real example is presented. 
 
 

1. INTRODUCTION 

The new techniques based on laser scanning observations allow 
to obtain, in the measurement area, a very detailed surface 
digital model (DSM), with the possibility of interpolating the 
data on grids also characterised by 1m x 1m resolution. 
 
The observations, interesting because of the high informative 
content particularly in the frame of geographic 3D features 
modelling, must be processed in order to automatically extract 
from the raw data, both the digital terrain model (DTM) and the 
shape of the man-made features superimposed on it. The latter 
last from the geometric point of view can be modelled by points, 
lines and polygons (or collections of them) which are not 
coherent with the surrounding terrain model. 
 
The proposed and implemented algorithms to treat polygonal 
surface are completely different from the ones which allow to 
single out point and linear entities. 
 
Indeed, in the second case (point and line), the entities detection 
is based essentially on the following hypotheses: 
• the digital terrain model is a regular surface which does not 

present remarkable discontinuities; 
• the point heights are independent of far points, but are 

correlated to points in the same surroundings. 
The second hypothesis allows us to build up statistical tests 
based on localised procedures (comparison between the 
observed value and the value predicted in the point by using the 
surrounding measurements) while the first allows to choose, as 
interpolating models, simple functions (e.g. polynomial models). 
Work has been done following the previous hypotheses and the 
results on a real example (detection of long distance power lines) 
give a good result. 
 

As is easy to guess, the method fails in cases of polygonal 
surfaces detection. To this aim we have then proposed a 
completely different approach explained in the next paragraphs. 
 
 

2. THE METHOD 

2.1 Overview 

The method proposed can be summarised in the following steps: 

• interpolation of raw data to obtain a regular grid, taking 
into account the problem of the regions with no 
observations (bicubic splines interpolation with hybrid 
norm Tychonov regularization); 

• edges detection, based on two considerations: 
1. the features edges are 'outliers' corresponding to 

sharp rise of the surface;  
2. the residuals between the raw and interpolated 

elevation are positive inside the objects and 
negative outside them.  

As the information from these is spatially incorrelated, we 
have at first classified the edges by using a threshold for 
the gradient and then we have thinned the edges taking 
into account only the pixels corresponding to the objects. 

• Region growing algorithm application to determine the 
convex surface inside the edges. Once we have detected 
the edge of all the features present, we classify all the 
pixels inside them. At first we have simply applied a region 
growing algorithm. However the procedure fails in some 
cases like for instance the saw-toothed roofs of industrial 
sheds or other eccentric roofs. Moreover in case like the 
ones of isolated trees the procedure (due to the oscillation 
of the bicubic splines) leads sometimes to overestimate 
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their dimension or to introduce new non-existent slivers of 
features.  

• Localised procedure to correct the misclassified pixels. The 
procedure is tuned up by two correcting parameters. 
Several experiments have set up the optimal parameters 
forareas with different feature content (open field, 
vegetation, buildings,...). 

• Removal from the observations of  those corresponding to 
non ground elements. 

• Interpolation of the ground observations by means of the 
procedure seen at point 1. In this case, taking into account 
the hypothesis of regularity of the digital terrain model, we 
have applied to obtain the final grid a bilinear spline 
interpolation with slope minimisation. 

In the next we explain in detail the more interesting points. 
 
2.2 Spline Functions and Tychonov Regularization  

The starting step consists in modelling the raw observations by 
using spline functions and the least squares approach. To this 
aim the observation equations read: 
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h t a s t∆ τ ν= − +∑                                    (1) 

 
where       ( )0 mh t  are the observed altimetric values (m=1,N); 
                   [l,k] are the knot grid indices; 
                    g describes the spline function type 
                   ( g=1 bilinear splines, g=3 bicubic splines) 
                   ∆ is the grid step; 

                  ( ) ( )lk lks t s t∆ ∆ τ= − is a function which 

determining a translation of the compact support  
which centres the spline at the generic grid knot lkτ . 

 
The function has been given by the Cartesian product of the 
monodimensional splines.  
 
In the linear case we have: 
 
 

( ) ( ) ( )

11

12
1 1

21

22

x [ 2 ,0]
           

y [ 2 ,0]

x [-2 ,0]
           

y [0,2 ]
s ( t ) s x,y

x [0,2 ]
           

y [-2 ,0]

x [0,2 ]
           

y [0,2 ]

∆
ϕ

∆
∆

ϕ
∆
∆

ϕ
∆
∆

ϕ
∆

 ∈ −
 ∈ −

 ∈  ∈ = = 
∈

 ∈
 ∈
  ∈ 

                  ( 2) 

   where:                    

( )( )

( )( )

( )( )

( )( )

11 4

12 4

21 4

22 4

2 x 2 y

16
2 x 2 y

16
2 x 2 y

16
2 x 4 y

16

∆ ∆
ϕ

∆
∆ ∆

ϕ
∆

∆ ∆
ϕ

∆
∆ ∆

ϕ
∆

+ +
=

+ −
=

− +
=

− −
=

                       (3) 

 
Instead, the bicubic spline reads: 
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where:  
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In order to avoid as much as possible cells empty of data, the 
grid resolution has to be set by taking into account the 
minimum distance of each observation with respect to the others. 
A possible choice can be the means of the minimum values.  
 
However, it has to be remarked that, even if ∆ is of the same 
magnitude as the mean minimum distances between the 
observations, due to the irregularity of the data distribution, 
cells without data still can remain.  
 
Moreover if the size of an empty region is such that some 
unknown parameter doesn’t appear in any equation, a rank 
deficiency results. 
 
This problem is related both to the grid step and to the degree of 
the spline function: in same cases, for instance, if we model the 
data by means of bilinear splines a singularity in the least 
squares normal matrix arouses, while if we use bicubic ones the 
problem has overcame.  
 
A more general approach to face singularity consists in 
performing an hybrid norm interpolation: we add, in the least 
squares principle, a condition assuring the solution uniqueness 
even in case of lack of data. 
 
Starting from  
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The regularised estimator of the a coefficients is obtained by 
minimising a linear function composed by two non negative 
parts: 
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where:  
 

yY ˆ0 − = usual least square minimising functional; K(a) =  

regularising positive function:  
 

∞→)(aK for ∞→a ; 
λ  =  regularising parameter. 
 
Usually, for the sake of simplicity, we take as K(a) a quadratic 
function: )aaaK t 0 , (       )( t ≥== KKKK .  In this case the 
estimation equations are linear.  
 
By applying the generalised least square principle, we obtain 
the following normal system: 
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where K has to meet the condition nAAt =+ )(rank Kλ  in 
order to guarantee the solution uniqueness. 
  
The regularising function to be chosen depends on the terrain 
morphology. Let us assume, as usual,   the terrain surface as a 
function h(t). 
 
In case there are not sharp slope or curvatures changes, we 
respectively assume that: 
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or 
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Thus, as Tychonov regularisation function, we take into account: 

∫ ∞<∇= dthhK 2)(                                                            (12) 

 
 

∫ ∞<∆= dthhK 2)(                                                             (13) 

 
 
respectively in order to control the slope (12) the curvature (13). 
Just to have an idea of the behaviour of the interpolating surface 
in case of lack of data in Fig. 1 the two solution corresponding 
to (12) and (13) in one dimension have been shown. The first 
solution is more rough, but allows to slope changes, while the 
second one leads spurious oscillation in case of sharp slope 
changes. Recalling the two different degree spline functions 
previously mentioned, we decide to associate respectively (12) 
and (13) to h(t) modelled by means of bilinear and bicubic 
splines. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Behaviour of the regularisation functions (12) and (13) 

 
The regularisation functions have to be discretized to be applied 
to our problem. 
  
K is a matrix (n x n) containing the first or second order 
derivatives of the h(t) surface in each grid knot.  
In case of bilinear splines we have:  
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from which we obtain the discretized form of the gradient: 
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and thus the K(a) functional: 
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Analogously in case of bicubic splines we get: 
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and finally: 
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3. THE EXAMPLE 

3.1 The Original Data  

The procedures and algorithms implemented have been applied 
on a LIDAR data set acquired in November 1999 on the town of 
Pavia and its immediate neighbourhood with Toposys sensor. 
The flight height was around 850 meters (a part from two 
halved height cross strips). The point density was roughly 5 
points per square meter and a one-meter grid was computed and 
delivered. The total data set covers an area corresponding to 
around 3248 x 7245 m2.  The characteristics of the data, 
corresponding to the last pulse observations,  are summarised in 
Table 1.  
 
As it is clear from the characteristics shown in Table 1, the area 
is almost flat and this is an advantage in our investigation.  
 
The method developed is based on least square approach: we 
must therefore subdivide data into tiles and process them 
separately to avoid a possible storage exhaustion due to the 
dimension of the normal matrix. Tiles have been bordered by 
adding  suitable strip of data at each side to prevent or at least 
reduce the border distortion in the interpolating procedure. 
 
UTM South-North coordinates  5'002'097.000 - 5'005'345.000  
UTM East-West coordinates    508'000.000 -    515'245.000
Grid resolution South-North 1 m 
Grid resolution East -West 1m 
Cells with data 23'531'760 
Cell without data 4'200'537 
Maximum height 245.44 m 
Minimum height 25.64 m 
Mean height 68.30 m 
Standard deviation 9.97 m 

 
Table 1. Statistics of the original data 

 
In this way tiles are partially overlapped and we to have a 
double solution for each border observation. The mean of the 
two interpolated heights weighted taking into account the 
distance between the datum and the edges of the tiles at which it 
belongs will use as input in the final computation of the DTM.  
 
3.2 Feature Edge Detection 

Starting from the two hypotheses already mentioned in 
paragraph 2.1, we need to compute the difference between the 
original and the interpolated values and the gradient in each 
observation point. 
 
Thus the first step has consisted in interpolating the observation 
by means of bicubic splines and the minimum curvature 
regularisation functional  seen in the paragraph 2.2. 
 
The regularising parameter has been set, after various tests, 
equal to 1. An example of the interpolated surface is shown in 
figure 2: the surface represents a smoothing image of the DSM. 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 2. Bicubic spline surface with Tychonov regularisation 

(extract from the global DSM) 
 
The gradient at each point has been computed applying to the 
interpolated values (in order to avoid the presence of gross 
errors) a 3x3 mask: 
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The pixels with gradient greater than 50 have been classified as 
edge pixels (Fig. 3a) 
 
The residuals between the observed and the interpolated values 
are positive inside the features and negative outside them: this 
criterion has been used to thin the edges (Fig. 3b). 
 
 
 



M. A. Brovelli  & M. Cannata 

 47

 
 
 
 

 
 
 
 
 

 
Figure 3. Edge detection from gradient (a) and adding the 

residual sign information (b) (extract from the global 
DSM) 

 
3.3 Edges Filling Up 

Once detected the edges of the objects, we have to fill up them. 
The proposed procedure consists in two steps. The first is a 
region growing algorithm: a moving 3x3 mask is centred at each 
point classified as object: each pixel in the mask whose value is 
greater or equals the central value is classified as object. The 
algorithm fails in case of eccentric roofs with pitches at 
different heights (Fig. 4). Moreover another case of 
misclassification occurs when isolated height discontinuities 
(e.g.: trees) are present: to maintain the minimum curvature the 
interpolating surface gives rise to spurious oscillations. The 
classification based on positive residuals and high gradient 
modulus recognizes as edge also the ground close to the peak  
and the region growing algorithm fills up a region greater than 
the actual feature dimension (Fig. 5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Edge detection and region growing in case of 

eccentric roof 
 

To correct the classification, the whole tile has been subdivided 
into subtiles: in each of them a bilinear surface has been 
computed  only from the heights of the ground pixels: all the 
pixels classified as objects and closer to the surface less than a  
threshold  are reclassified as ground pixels; all the pixels 
classified as ground and further than the second threshold from 
the surface are taken into account as object pixels. 
 
The dimension of the subtiles (‘dim’) and the two thresholds 
(‘ground height’, ‘house height’) have been tuned up tile by tile 
taking into account the morphology and landuse of the zones. 
We have recognized within the 36 tiles three kind of areas:  
• 9 urban areas with: ‘dim’= 50 m, ‘house height’ = 1.5 m, 

‘ground height’=1.5 m,  
• 10 rural areas with: ‘dim’= 90 m, ‘house height’ = 1.5 m, 

‘ground height’=1.5 m  
• 10 industrial areas. These last have been the more complex 

to model because of the presence of the saw-toothed roofs  

of  the sheds have push us up in choosing time to time the 
suitable parameters.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Edge detection and region growing in case of isolated 

peak 
  
3.4 DTM Computation  

First of all we analyze the heterogeneity within the overlapping 
zones. An example of heterogeneity is shown in Fig. 6. 
Obviously a systematic relation between the difference in the 
parameters used and the classification heterogeneity percentage 
exists. Anyway by our algorithm the classification errors lead to 
an over estimation of the pixels classified as objects.  
 
 

 
 
 

Figure 6.  Classification heterogeneity in two overlapping zones. 
 
Thus, in order to avoid distortion in the DTM, the pixels 
classified at least one as object, have been left out of the final 
computation: the high observation resolution and the 
availability of the algorithm to manage the lack of data allows 
us to pick out only the more probable ground pixels.  
 
The final DTM computation has been performed by interpolate 
the ground observations by means of bilinear splines and slope 
minimisation. The regularising  λ parameter has been choosen 
equal to  1 . The global DTM has been obtained patching the 
partial ones of each tile. In the pixels belonging to the 
overlapping regions the mean height weighted referring to the 
distance of the pixel from the edge of the tile, has been 
computed. 
 
3.5 Comparisons and Conclusions 

The output DTM covers the same area and has a resolution of 
10  x  10  m2.  To  verify   the  correctness  of  the  final  result  
acomparison with two independent data set has been performed:  
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• the heights of the levelling point network of the Pavia map 
at scale 1:500, determined within the altimetric tolerance 
of 0.25 m; 

• the heights of  17 points used as  control points for the 
photogrammetric survey done contemporary to the laser 
scanning. 

In the first case, after the removal of no corresponding points 
(for instance in our DTM features like bridges are not 
considered as part of the terrain, on the contrary in levelling 
data the heights are measured on them) we remained with 687 
points. The statistics of the differences between the two heights 
sets (mean=-0,01 m and rms=0,66 m) show a good agreement 
between them (see Fig. 7). The highest differences are mostly 
attributable to points on the river banks and can not be 
considered mistake, as our method, representing the "natural 
DTM', does not model the retaining walls of the riverside. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 7. Histogram of differences between lidar and levelling 
heights (source: Pavia technical map) 

 
The agreement between LIDAR and photogrammetric control 
points, in which GPS levelling have been performed is even 
better. In fact, as shown in Table 1, the difference are greater 
than 1 meter only in the cases of points 4 and 13. 
 
The first point is on an elevated road (Fig. 8), while our DTM 
reproduces the natural ground behaviour; the same happens at 
point 13, which is on the embankment (Fig. 9). 
 
Concluding we feel that our methodology is performing very 
well, though some refinements are still necessary. 
 

point # LIDAR heights (m) Differences (m) 
 1 73.2617 0.088 
 2 71.9653 0.314 
 3 66.5686 0.152 
 4 60.3848 6.436 
 5 60.4784 0.077 
 6 62.4465 0.256 
 7 77.7738 0.131 
 8 74.9569 0.451 
 9 79.6286 0.891 
10 74.0923 0.325 
11 77.3464 0.363 
12 68.7543 0.160 
13 59.5656 1.608 
14 60.3506 0.672 
15 73.2104 0.350 
16 72.5288 0.927 
17 78.3855 -0.120 

 

Table 1. Differences between LIDAR and GPS heights at the 
photogrammetric control points 

 

 

 

 

 

 

 

 

Figure 8. Point on a elevated road in which the differences 
between GPS and LIDAR heights are higher than 1 
m. 

 
 

 

 

 

 

 

 

 

Figure 9. Point on an embankment in which the differences 
between GPS and LIDAR heights are higher than 1 
m. 
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