
M. Crosetto, B. Crippa , R. Barzaghi  &  M. Agudo  

 67 

MODELLING AND ANALYSIS TOOLS FOR INTERFEROMETRIC SAR 
OBSERVATIONS 

 
 

M. Crosetto a, B. Crippa b, R. Barzaghi c, M. Agudo a 
 

a Institute of Geomatics, Campus de Castelldefels, 08860 Castelldefels (Barcelona), Spain 
michele.crosetto@ideg.es , marta.agudo@ideg.es 

b Department of Earth Sciences, University of Milan, Via Cicognara 7, 20129 Milan, Italy  
 bruno.crippa@unimi.it 

c DIIAR, Politecnico di Milano, P. Leonardo da Vinci 32, 20133 Milan, Italy  
riccardo@geo.polimi.it 

 
Commission II, WGII/2 

 
 
KEY WORDS:  SAR, Monitoring, Modelling, Estimation, Simulation.  
 
 
ABSTRACT: 
 
A quantitative deformation monitoring using the differential interferometric SAR (DInSAR) technique may be achieved when multiple 
DInSAR observations and suitable modelling and analysis tools are employed. The paper begins with a description of the main 
characteristics of the DInSAR data. Then, it discusses a new modelling and filtering strategy, which takes advantage of the specific 
properties of the DInSAR observations. The core of the procedure is the least squares collocation filtering and prediction, which 
exploits the correlation properties of the DInSAR data. The proposed procedure was tested on simulated DInSAR data that reproduce 
the characteristics of a small scale and slow deformation rate subsidence, and that include the main components of the interferometric 
data: the atmospheric contribution, the phase noise component, and the outliers due to the unwrapping related errors.  
 
 

1.  INTRODUCTION 

The differential interferometric SAR technique (DInSAR), based 
on spaceborne SAR data, has been successfully employed in 
different application fields: glacier dynamics (Goldstein et al., 
1993; Kwok and Fahnestock, 1996); earthquakes (Massonnet et 
al., 1993; Massonnet et al., 1994); volcanoes (Massonnet et al., 
1995; Amelung et al., 2000); landslides (Carnec et al., 1996); and 
the deformations related to water resource exploitation, mining 
activity, and construction works (Amelung et al., 1999). The 
above applications require different quality levels to the 
estimates provided by DInSAR. A quite qualitative use of the 
DInSAR results seems to be sufficient for the purposes of some 
applications. This is the case of several studies where the 
geophysical interpretation may be simply based on the 
qualitative information derived from DInSAR observations, see 
Tesauro et al. (2000) and Lu and Danskin (2001). However, this 
is not the case for some other important applications, e.g. the 
subsidence monitoring in urban areas, which need to be 
characterised by high quality standards like those usually 
achieved by the geodetic techniques. This type of applications 
need a fully quantitative DInSAR monitoring based on multiple 
observations (multiple interferograms) of the phenomenon under 
analysis.  
 
The DInSAR technique may provide a quantitative monitoring 
tool only if suitable data modelling and analysis procedures are 
employed. It is important to note that the use of multiple DInSAR 
observations requires 3D modelling and data analysis tools. In 
literature these procedures have received little attention. 
Furthermore, little importance has been usually given to 
important quality aspects, like the precision, accuracy and 
reliability of the DInSAR estimates. Berardino et al. (2001) 
describe a procedure to combine multiple interferograms, which 
works pixelwise connecting the observations of a single pixel 
with a 1D model. Ferretti et al. (2000) also adopt a 1D model, 

which is coupled with a spatially smoothing filter. Other authors, 
like Strozzi et al. (2001) and Williams et al. (1998), simply 
compute the average of multiple interferograms (interferogram 
stacking). 
 
This paper describes new modelling strategies based on 2D and 
3D adaptative models (the discussed results concern the 2D case), 
which fully take advantage of the specific properties of the 
DInSAR observations. This work only focuses on phenomena 
characterized by vertical displacements. The paper begins with a 
description of the basic properties of the DInSAR observations. 
This is followed by the discussion of a modelling strategy for 
multiple DInSAR observations and the results obtained on 3D 
simulated datasets. Section four describes some possible 
evolutions of the described research.  
 
 

2.  CHARACTERISTICS OF THE DINSAR DATA 

The D-InSAR technique exploits the phase difference 
(interferometric phase) Int∆Φ  of two SAR images (hereafter 
referred to as the master - M  - and the slave - S  - images). Let 
us consider a point P  on the ground, which remains stable in the 
time interval between the image acquisitions. Int∆Φ  is related to 
the distance difference MPSP − , which is the key element for 
the InSAR DEM (Digital Elevation Model) generation.  When 
the point moves from P  to 1P  between the two image 
acquisitions, besides the phase component due to terrain 
topography, TopoΦ , Int∆Φ  includes the terrain movement 

contribution, MovΦ . In the general case Int∆Φ  consists of the 
following components: 
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where SΦ , MΦ  are the phases of S  and M ; AtmΦ  is the 

atmospheric contribution; NoiseΦ  is the phase noise; 1SP  is the 

slave-to- 1P  distance; and λ  is the radar wavelength. If the 
terrain topography is known (i.e. a DEM of the imaged area is 
available), TopoΦ  can be computed ( SimTopo _Φ ) and subtracted 

from Int∆Φ , obtaining the D-InSAR phase IntD−∆Φ : 
 
 

NoiseToposAtmMovSimTopoIntIntD Φ+Φ+Φ+Φ=Φ−∆Φ=∆Φ − _Re_

 

where Topos _ReΦ  represents the residual component due to DEM 
errors. In order to derive information on the terrain movement, 

MovΦ  has to be separated from the other phase components. 
When multiple DInSAR observations are available, the 
following important properties may be exploited to this purpose 
(see next section): 

 
1. MovΦ  is highly correlated, spatially and temporally; 

2. AtmΦ  is correlated spatially, and uncorrelated temporally; 

3. NoiseΦ  and Topos _ReΦ  can be considered spatially 
decorrelated (hereafter they are referred to as the noise). As far 
as Topos _ReΦ  is concerned, this assumption holds for high 
quality DEMs, e.g. the high resolution photogrammetric 
DEMs, while it does not hold for the InSAR DEMs, potentially 
affected by atmospheric effects. 

 
It is important to underline that the above properties can only be 
exploited when multiple DInSAR observations are available, i.e. 
when a 3D sampling of the subsidence phenomenon under 
analysis is performed: 2D in space, plus the time. Using a single 
interferogram it is in principle not possible to separate MovΦ  
from the other phase components, in particular from AtmΦ : this 
fact represents an important limitation of the DInSAR technique. 
An exception occurs dealing with small-scale subsidences, when 
a priori information on the subsidence area is available (Crosetto 
et al., 2002a). The key step is the identification of stable areas in 
the vicinity of the deformation area under analysis. On those 
areas MovΦ  is naught: it is therefore possible estimate AtmΦ , 
which represents the only spatially correlated component (signal) 
of IntD−∆Φ . AtmΦ  can be estimated by analysing the spatial 
autocorrelation of IntD−∆Φ . We base this analysis on the 
autocovariance function, whose characteristic parameters are the 
variance of the signal 2

Sσ  and the correlation length CL . An 
interferogram weakly affected by atmospheric effects will be 
characterised by a nearly zero value of 2

Sσ  and CL , while in 
presence of atmospheric heterogeneities the two parameters will 
be significantly different from zero. The above criterion can be 
used to classify reliable and potentially degraded interferograms. 
The autocovariance functions of the phase of three ERS-1/2 
interferograms, which were computed over a 3 by 2 km stable 

area, are shown in Figure 1. One may notice the different 
behaviour of the two interferograms affected by strong 
atmospheric components, Int2 and Int3, and Int4, which is 
characterized by a weak MovΦ . Over the stable areas AtmΦ  can 
be separated from the other two components (filtering). 
Moreover, it can be predicted over the subsidence area and 
subtracted from the original phase IntD−∆Φ , hence reducing the 
atmospheric effects. For a detailed description of the procedure, 
which is based on the method of the least squares (LS) 
collocation, see (Crosetto et al., 2002a). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Autocovariance functions of the phase of three ERS-1/2 

interferograms, computed over a 3 by 2 km stable area. 
 
 

3. A 2.5D MODELLING FOR MULTIPLE DINSAR 
OBSERVATIONS 

The fusion of multiple DInSAR observations involves a 3D 
modelling of the subsidence at hand: two dimensions in space, 
plus the time. As already mentioned in the introduction, the 
models proposed in literature are sometimes only limited to one 
single dimension of the phenomenon under analysis, see the 1D 
models adopted by Berardino et al. (2001) and Ferretti et al. 
(2000): they provide a pointwise description of the subsidence 
temporal evolution. Other authors employs a very simple 
strategy based on averaging the observations of multiple 
interferograms, see Strozzi et al. (2001) and Williams et al. 
(1998). This last procedure, which is quite popular in literature, is 
often named interferogram stacking technique. 
 
In this section we describe a procedure based on an adaptative 
modelling, which fully takes advantage of the correlation 
properties mentioned in the previous section. The proposed 
procedure employs a "2.5D modelling", which couples two 
different models: a 2D model, which is used to assess the 
subsidence velocity map of the observed field (assuming a 
constant deformation rate over the observed time interval); and a 
1D model, which is employed to estimate the temporal evolution 
of the subsidence in some selected points of the deformation field. 
The main features of the proposed procedure are briefly outlined 
below. 
 
1.  The assumption of a constant deformation rate over the 

observed time interval allows a 2D model to be adopted, 
instead of a quite more complex 3D one. This assumption 
should be quite appropriate to different applications (at least as 
a first approximation). 
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2.  The procedure requires multiple interferograms of the same 
subsidence area. The interferograms are processed separately, 
deriving from each interferogram the corresponding velocity 
field. The velocity fields are then put together as input 
observations of the 2D estimation procedure (stacked velocity 
fields). These fields contain the contributions of the four phase 
components described in the previous section, where in this 
case MovΦ  represents the stationary signal; AtmΦ  is 
temporally uncorrelated but can be spatially correlated within 
each velocity field; and NoiseΦ  and Topos _ReΦ  are white 
noise. 

 
3.  The subsidence velocity map is estimated through the classical 

LS collocation procedure, which involves the estimation of the 
autocovariance function of the stacked velocity fields, the 
separation of the signal from the noise (filtering), and the 
prediction of the signal over location not covered by the input 
data (Moritz, 1978; Dermanis, 1984). The proposed procedure 
provides an adaptative filtering, which is only driven by the 
autocovariance function of the input data, without requiring 
any explicit modelling of the subsidence at hand: it is quite 
more flexible than the classical interpolation techniques, e.g. 
based on polynomials, etc. The collocation filtering may only 

work if the stationary signal (related to MovΦ ) is "strong 

enough" to be separated from the AtmΦ . This is not the case 
over the stable areas, which have to be excluded before running 
the collocation filtering. For this purpose we run a 
pre-processing of the stacked velocity fields based on a robust 
filter (a 3D median filtering). 

 
4.  The analysis of the temporal evolution of the subsidence is run 

on the residuals of the 2D collocation filtering (i.e. the 
differences between the observations and the corresponding 
estimated signals). Different analysis tools may be 
implemented: LS linear regression, 1D collocation filtering, etc. 
In this analysis the data redundancy plays a critical role. In fact, 
unlike the 2D collocation filtering, where usually large data 
sets are filtered, this analysis concerns very limited sets of data 
(say, 15-20 observations, one for each stacked interferogram). 
In order to gain redundancy, the temporal profiles of neighbour 
points may be put together. The analysis is typically performed 
on few selected locations of the deformation field under 
analysis (for instance, the location of the maximum 
deformation rate and some points of particular interest). This 
step is fundamental to check the goodness of the 2D model 
assumption (constant deformation velocity). 

 
 

4.  DISCUSSION OF THE RESULTS 

The performances of the proposed procedure were tested on 
simulated DInSAR data that roughly reproduce the 
characteristics of a real subsidence phenomenon: the urban 
subsidence of Sallent (North Catalunya, Spain), which has been 
extensively analysed at the Cartographic Institute of Catalonia, 
see (Crosetto et al., 2002a; Crosetto et al., 2002b). This 
subsidence, which has slow deformation rate and small spatial 
extent, represents a quite difficult case for the usage of the 
DInSAR technique. The simulated data include different 
components, as it is detailed below. 
 

1.  A 3D deformation field, ),,( tYXFd = , whose main 
characteristics, like the shape, extension, deformation rate and 
temporal evolution, are quite similar to those of the Sallent 
subsidence. This is an "error-free" field, which was used in the 

analysis as a reference to assess the performances of the 
proposed filters. A deformation map, which corresponds to an 
observation interval of 5 years, is shown in Figure 2. The 
maximum deformation rate is 20 mm/yr. 

 
2.  A 3D atmospheric field, which reproduces the contribution of 

the atmospheric effects. This field is spatially correlated, i.e. 
within a given interferogram (at a fixed t ) it is correlated in the 
[ ]YX ,  domain. The data simulation was originally designed to 
work in a Monte Carlo framework. Therefore all the data (with 
the exception of the deformation field) were generated 
randomly. For each interferogram the generation of the 
atmospheric fields is based on the Cholesky decomposition, 
see for instance (Crosetto et al., 2001), and is driven by the 

standard deviation Atmσ  of the atmospheric component and its 

correlation length CL . An example of an atmospheric field is 
shown in Figure 3. This field covers approximatively the same 
area shown in Figure 2 and has a grid spacing of 20 m. In this 

case Atmσ  is  5.7 mm/yr and CL  is about 210 m.  
 
3.  A 3D white noise field, which includes the contributions of  

NoiseΦ  and Topos _ReΦ
. This field is randomly generated 

assuming a zero-mean normally distributed noise. For each 

pixel, the noise standard deviation noiseσ  is derived from the 
coherence map of the associated interferogram (for a review of 
different methods to estimate the phase noise as a function of 
the coherence, see (Hanssen, 2001)). An example of white 
noise, which is superposed to a deformation filed is shown in 
Figure 4. This field covers the same area from Figure 3, with a 

20-m grid spacing). In this case the average noiseσ  is 3.4 
mm/yr. 

 
4.  The unwrapping related errors represent a particular type of 

errors in the interferometric data. They are due to aliasing 
effects during the phase unwrapping. Since they are multiple of 
2  they have a large magnitude compared to the noise. They 
are usually associated with low coherence areas and affect 
clusters of neighbour pixels. These errors may be included in 
the simulated data. 

 
5.  The subsidences characterized by slow deformation rates, 

such as the one considered in this work, are only detectable 
over large observation intervals, where the SAR images 
usually have very low coherence. In low coherence areas the 
phase noise is high and it is often not possible to unwrap the 
interferometric phase, thus causing a data loss. The data loss 
was taken into account in the data simulation. An example is 
shown in Figure 4, where the data loss is 32.6 %.  

 
In order to test the proposed procedure, different data simulations 
were performed. Firstly, the 2D LS collocation was run on a 3D 
dataset which consists of 10 stacked velocity fields and which 
includes the reference deformation field, the white noise and the 
data loss effect. The autocovariance function of this dataset is 
shown in Figure 5. The total variance 2

Tσ  is 47.91 mm2/yr2, 

while the variance of the signal is 64.5 % of 2
Tσ . The average 

data loss is 32.6 %. This dataset does not include a temporal 
evolution of the deformation (i.e. it has a constant deformation 
rate). In Figure 6 it is shown a profile of the observations (i.e. the 
input data of the estimation procedure), the estimated 
deformation field (estimated signal) with the associated 
confidence bands (signal ± standard deviation). The location of 
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the profile is illustrated in Figure 2. One may notice that the 
estimated signal follows rather well the reference profile. It is 
important to note that this last profile was not used in the 
estimation of the signal. An exception occurs in the left part of 
the profile, where the reference values have a localized variation: 
in this case the LS collocation method, due to the structure of the 
autocovariance function that is reported in Figure 5, does not 
"recognize" this variation as a signal and therefore performs a 
smoothing of the surface. 
 
 

 
 

Figure 2. Simulated deformation map, which corresponds to a 
time interval of 5 years. Each fringe corresponds to a 
vertical movement of 10 mm. 

 
 

 
 
Figure 3. Example of an atmospheric field with 20-m grid 

spacing, which covers the same area from Figure 2.  
 
 

 
 
Figure 4. A noise field superposed to a deformation filed, which 

covers the same area from Figure 2. The grid spacing is 
20 m; the data loss is 32.6 %.  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Autocovariance function of a simulated dataset which 

consists of 10 stacked velocity fields. The total 
variance 2

Tσ  is 47.91 mm2/yr2; the variance of the 

signal is 64.5 % of 2
Tσ . 

 
A second dataset was generated to check the robustness of the LS 
collocation method against the "outliers" due to unwrapping 
related errors. In Figure 7 it is shown a profile of the observations, 
the estimated signal and its associated confidence band. The 
noise and data loss were the same as in the previous dataset. The 
considered cluster of outliers includes 6 by 6 pixels (six of them 
are visible in the profile) with a magnitude of 30 mm/yr (this 
corresponds to a phase error of 2π for an interferogram with 
1-year observation interval). One may notice a localized effect 
(in the interval between 400 and 520 m) on the estimated signal. 
However, the maximum amplitude of this effect is less than 3 
mm/yr, i.e. less than one tenth of the magnitude of the input 
errors. The LS collocation method is quite robust against the 
unwrapping related errors, which can be easily detected and 
eliminated by analysing the residuals of the LS collocation 
estimation. This may appropriately be performed using the 
classical Baarda data snooping (Baarda, 1968). 
 
The filtering of the atmospheric component represents the most 
delicate step of the proposed procedure. In fact, the LS 
collocation is only able to filter out the uncorrelated part (noise) 
of the input observations from their correlated part (signal). As 
already discussed in the previous section, the collocation filtering 
is expected to work on a stacked velocity fields if the signal 
related to MovΦ  is enough strong to overcome the signal due to 

AtmΦ . This should reasonably happen because the component 
due to MovΦ  is stationary in time (therefore it has a strong 
correlation in the stacked velocity fields), while AtmΦ  is 
temporally uncorrelated: increasing the number of 
interferograms implies AtmΦ  to be considered as a noise 
component in the stacked signal. We have however to recognize 
that this is a quite heuristic approach. In practice, given a set of 
interferograms the strength of the signal due to AtmΦ  will 
depend on the magnitude of the atmospheric effects on each 
interferogram, on their spatial correlation length and on the total 
number of interferograms.  
 
Two scenarios may be foreseen. In the most favourable one, 
which is most likely to occur using large numbers of 
interferograms, the atmospheric effects tend to cancel out in the 
mean, leaving a weak signal due to AtmΦ . In this case the signal 
estimated with the LS collocation method will be unbiased, or 
only slightly affected by the atmospheric effects, like in the case 
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shown in Figure 6. In this case the interferograms affected by 
severe atmospheric effects may be identified by analysing the 
residuals of the LS collocations: the corresponding residuals will 
show a very strong correlation, while in absence of (or with weak) 
atmospheric effects the residuals will tend to behave as white 
noise. These interferogram could be eliminated to perform a 
more refined estimation of the signal (second iteration). What 
happens in the second scenario, when the atmospheric effects do 
not cancel out completely? An example, based on simulated data, 
is shown in Figure 8. A dataset of 10 interferograms was 
generated, assuming for the atmospheric effects that CL  is 600 m, 
and Atmσ  is 15 mm/yr and 4.5 mm/yr in the 20 % and 47 % of the 

interferograms, respectively. In the remaining 33 %, Atmσ  was 
assumed to be naught (negligible atmospheric effects). In this 
case, the average of the atmospheric effects is significantly 
different from zero, see Figure 8: there is a residual trend (from 
about - 3.5 mm/yr, on the left part of the profile, to 3.6 mm/yr on 
the right one) that results in a linear bias in the estimated signal. 
In this case it is not possible to identify the interferogram(s) 
affected by severe atmospheric effects. In fact, the linear bias in 
the estimated signal corrupts the residuals of the LS collocation, 
which will exhibit correlation even if the associated 
interferograms have no atmospheric effects.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Filtering on a set of 10 stacked velocity fields, which includes white noise and the data loss effect. Profile of the observations 

and the estimated deformation (estimated signal) with the associated confidence bands (signal ± standard deviation). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Filtering on a set of 10 stacked velocity fields, which includes outliers due to unwrapping related errors, whose magnitude is 
30 mm/yr. The outliers have a localized effect (between 400 and 520 m) on the estimated signal.  
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Figure 8. Filtering on a set of 10 stacked velocity fields, which includes atmospheric effects. The temporal average of these effects is 

significantly different from zero; this results in a residual in a linear bias in the estimated signal. 
 
 

The possibility to get a biased deformation field due to non 
compensated atmospheric effects could represent a limitation of 
the procedure. It is however important to underline that the 
above example is base on synthetic data and that the actual 
possibility to get, in real data, the same residual atmospheric 
effect has to be assessed by analysing sets of real interferograms 
over stable areas. The influence of the atmospheric component 
may be drastically reduced if stable areas can be identified in the 
vicinity of the deformation area under analysis. In this case, in 
fact, the procedure described in section 2 may be used to classify, 
from the viewpoint of atmospheric effects, reliable and 
potentially degraded interferograms. The latter ones could be 
eliminated (or under weighted, in case a weighted collocation 
procedure is used) before running the collocation filtering. 
 
 

5.  DISCUSSION AND CONCLUSIONS  

In this paper an adaptative modelling, which takes advantage of 
the properties of multiple DInSAR observations has been 
described. In the proposed procedure two models are coupled: a 
2D model, which is used to assess the velocity map of the 
observed field, and a 1D model, which is employed to estimate 
the temporal evolution of the subsidence in some selected points. 
In this paper the analysis of the results has been only focused on 
the 2D collocation filtering. The proposed filtering provides a 
flexible modelling tool for the deformation fields with low 
spatial frequency characteristics. An important advantage is that 
it provides the filtered and predicted signals with their 
associated variances, thus describing the stochastic features of 
the estimated deformation field. The procedure works properly 
with quite noisy observations. It accepts in input evenly 
distributed observations: all the results described in this paper 
were obtained on irregular grids of data, which include an 
important percentage of "holes" due to data loss. Furthermore, 
the procedure is robust against outliers, like those due to 
unwrapping related errors, which may be easily eliminated by 
analysing the residuals. The procedure can separate the 
deformation from the atmospheric component, unless there are 
strong non-compensated atmospheric effects.  
 
Two future developments of the present work are foreseen: the 
implementation of a fully 3D modelling, and the fusion of data 
coming from different sources. The extension from 2D to 3D 

would be of particular interest for all the subsidences 
characterized by important temporal variability. It would require 
an adequate number of interferograms. In fact, dealing with 3D 
fields involves a much larger number of unknown in the LS 
collocation. The data fusion could be used to estimate the 
deformation fields starting from heterogeneous sources, like 
DInSAR, GPS, levelling networks, etc. This could be done by 
using a weighted version of the LS collocation filtering. 
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