
Qiang LIU

 297

A RECURSIVE ALGORITHM FOR TRIANGULATION OF ARBITRARY POLYGON
BASED ON BSP TREE

Qiang LIU

Sichuan Bureau of Surveying and Mapping, 198, Sect. 2, Renminbei Road, Chengdu, China, 610081

liuqiang_em@sina.com

Commission II, WGII/6

KEY WORDS: Triangulation; BSP tree; Polygon; 3D GIS; Recursive algorithm

ABSTRACT:

Triangulation of polygon is of very importance in three-dimensional software applications. An algorithm for triangulation of polygon
based on binary space-partitioning (BSP) tree idea is proposed in this paper. That is, this algorithm implements triangulation of
poly-gon with recursive method according to BSP tree structure. It is suitable for not only simple polygons with arbitrary convex or
conca-ve shapes but also complex polygons with islands. Moreover, taking into account elevation, it is also completely suitable for
three-di-mensional representation for long-distance streams with terrain undulation.
Triangle is the simplest polygon in computer graphics. Most polygonal surfaces are rendered via triangles in many popular 3D
rendering Engines such as OpenGL and Direct3D. Therefore, polygons must be correctly triangulated before rendering.
Some algorithms for triangulation of simple polygon were put forward. Nevertheless, they could not be applied perfectly for
polygons of buildings, roads and rivers, and so on, in 3D Geo graphical Information Systems (GIS) on account of polygonal terrain
feature and complexity.
A recursive algorithm for triangulation of polygon based on binary space partitioning (BSP) tree is proposed in this paper. That is,
this algorithm implements triangulation of polygon with recursive method according to BSP tree structure. It is suitable for not only
simple polygons with arbitrary convex or concave shapes but also polygons with islands. Moreover, taking into account elevation, it
is also completely suitable for three-dimensional representation for long-distance streams with terrain undulation.

1. PARTITION PRINCIPLE

For a polygon with n vertices, correct triangulation should
conform to principles as follows:

（1） Each triangle vertex should also be one of the

polygon’s;
（2） All triangles could not intersect the polygon;
（3） All triangles should lie inside the polygon;
（4） Triangle number should be n-2;

We first introduce related concepts in this context as follows:

Intersection between two line segments: If intersection point lies
in between two endpoints of two line segments individually,
then there exists intersection between the two line segments,
otherwise, if not, called no intersection.

Line segment inside a polygon: If two endpoints of a line
segment lie inside a polygon, then the line segment is in the
polygon. Similarly, if a triangle is called inside a polygon, it
means all the boundaries of this triangle are either on or inside
the polygon. If not, we call that the line segment or triangle is
outside of the polygon.

Correct triangle: If a triangle not only lies inside a polygon, but
also does not intersect the polygon, then it is called a correct
triangle.

2. TRIANGULATION ALGORITHM

First, we discuss the algorithm idea as follows:

2.1 Algorithm Idea

2.1.1 BSP Concept

In data structure theory, the tree structure characteristics are: it
is a node set starting from the only start node called root one. A
node may be regarded as a parent, whi- ch points to zero, one or
more nodes called children. A node w- ithout child is called leaf.
The root node has no parent.

BSP tree has such particular characteristics: each node has zero,
one or two children, left node is called left child, and right node
is called right child.

2.1.2 BSP Tree Structure of Triangulation

There might be many possible results of triangulation of
polygon. After carry- ing out comprehensive analyses and
studies, the author draws the conclusion that polygon could be
triangulated according to BSP tree idea, that is, a polygon may
be subdivided into a trian- gle mesh according to BSP tree
structure.

We will discuss how to triangulate a polygon according to BSP
tree structure below.

First, we set up a correct triangle, the root node of the BSP tree,
with two adjacent vertices and another vertex in the polygonal
vertex sequence. Obviously, the root triangle divides the
primitive polygon into one or two sub-polygons except for this
triangle, which lie in two sides of the triangle respectively. Then,
we subdivide the two sub-polygons, respectively, thus, to
generate left and right child triangles of the root triangle.

 Surface Contents Author Index

IAPRS, VOLUME XXXIV, PART 2, COMMISSION II, Xi’an, Aug.20-23, 2002

 298

Further, recurs ively, grandchild, great-grandchild, and so on,
could be built up. If current triangle has no child, that is, it is a
leaf node, then we will return up to its parent node. If this parent
node is left node of its last level node, then we will build up its
right child subtree recursively down, otherwise, we will return
up to its last node.

We will describe the algorithm idea below in detail. Assume
that polygonal boundary to be partitioned is made up of a
sequence with n vertices such as P0, P1, P2, P3, P4, …, Pn-1,
etc.. The procedure is as follows:

(1) Set up root node triangle. First, let V1= P0 and V2=P0.
Suppose alternatively that V3 (called active vertex in this
context) is one of the remaining vertices in the sequence, if
vertices V1, V2 and V3 compose a correct triangle, then, the root
node of the BSP tree is gener-ated.

(2) Determine whether the current triangle has a child one or
not. If V3 is adjacent to V1, then this root node triangle has no
left child node, on the contrary, it do-es; similarly, right child
node may be determined via adjacent relationship between V3
and V2.

(3) Set up child triangle. Assume that current triangle has a left
child triangle. If V2 lies in left side of line segment V1V3, we
could generate a new correct triangle in the right sub-polygon of
the primitive polygon, called current triangle’s left child triangle.
Similarly, we could also generate right child triangle.

(4) Determine whether current new triangle is a leaf node or
not. If it is, then we return up to the last level node, otherwise,
we repeat step 2, 3, and 4, and build its child triangle.
Recursively successively, finally the triangle mesh of the
polygon triangulated could be set up.

2.2 Example

As shown in Fig. 1, we assume that a polygon is made up of
twenty-nine vertices (P0, P1, P2, P3, …, and P28, etc) . First,
letV1 = P0 and V2 = P1. Then alternatively suppose V3 = P28, P27,
P26, P25, etc, until ∆V1V2V3 is a correct triangle. Thus, we
generate a new correct triangle. Lastly, we could build up the
triangle mesh via BSP tree idea.

Figure 1. Demonstration of triangulation based on this
algorithm

According to BSP tree structure, the order of triangles generated
above is: ∆P0P1P28→∆P1P28P27→∆P1P27P26→∆P1P26P25→

∆P1P25P24→∆P1P24P23→∆P1P23P20→∆P1P20P19→∆P1P19P18→

∆P1P18P17→∆P1P17P16→∆P1P16P15→∆P1P15P14→∆P1P14P13→

∆P1P13P12 → ∆P1P12P4 → ∆P1P4P3 → ∆P1P3P2 → ∆P12P4P11 →

∆P4P11P10 → ∆P4P10P9 → ∆P4P9P5 → ∆P9P5P8 → ∆P5P8P7 →

∆P5P7P6→∆P23P20P22→∆P20P22P21.

3. TRIANGULATION OF POLYGON WITH ISLANDS

We discuss algorithm for triangulation of simple polygon above.
Similarly, we still could use BSP tree idea to triangulate
polygon with islands, such as streams. As shown in Fig. 2, we
assume the boundary of polygon A with island B includes an
internal boundary and an external boundary. The triangulation
idea is illustrated as follows: first, we search for and find an
external boundary vertex, whose connection line with a certain
vertex ofthe internal boundary does not intersect the two
polygonal boundaries. For example, we produce line segment l
in Fig. 2 by connecting vertex P0 with P9, thus, polygon A with
island B is changed into a new polygon without any island, and
the former two vertex sequences are merged. New vertex
sequence is in order: P0, P1, P2, P3, P4, P5, P6, P7, P8, P0, P9, P16,
P15, P14, P13, P12, P11, P10 and P9, etc. Here, line segment l may
be considered as two boundary line segments of the new
polygon. After we perform above conversion, then we apply the
method for triangulation of simple polygon discussed above,
thus, we also could implement triangulation of polygon with
islands successfully.

Figure 2. A polygon with an island

4. TRIANGULATION OF UNPLANAR POLYGON AND

OPTIMIZATION FOR GRAPHICS SHAPE

4.1 Triangulation of Unplanar Polygon

We discussed triangulation of planar polygon emphatically
above. Nevertheless, in three-dimensional applications,
especially in 3D GIS applications, some surface-shaped objects,
such as roads, streams, etc., are not planar polygons but
unplanar ones. If we accomplish triangulation of these simple
unplanar surfaces with above algorithm, it will lead to incorrect
representation relative to reality.

So, for unplanar polygons, such as roads and streams, etc., to
avoid incorrect representation, we should add an extra condition

P21

P13

B

P0

P1

P2

P3
P4

P5

P6

P7P8

P10

P11

P12

P14

P15

P16 l P9

P1

P2

P3

P4
P5

P6

P7
P8

P9

P10

P11

P12 P13 P14 P15
P16

P17 P18
P19

P20

P21

P22

P23

P24

P25

P26
P27

P28 P0

A

Qiang LIU

 299

taking into account relief feature to above algorithm for
triangulation of planar polygon. For example, to generate a
child triangle of current triangle, in the above algorithm for
triangulation of planar polygon, we regard the vertex first
composing a correct triangle with vertices V1 and V2 as active
vertex V3. Nevertheless, in the process of selecting active vertex
V3 for triangulation of unplanar polygon, first, we generate a
point set of all remaining vertices forming correct triangles with
vertices V1 and V2 from the vertex sequence. Then, we regard
the vertex whose elevation value is the closest to the average
value of vertices V1 and V2 among the point set as active vertex
V3. Thus, vertices V1, V2 and V3 constitute ∆V1V2V3. For
example, as shown in Fig. 3, when starting triangulation, let V1
= P0 and V2 = P1, this moment, P2, P3, P4, P5, P6, P7, P9, P10, P11,
and P12 could alternatively form correct triangle with V1 and V2.
These active vertices form a point set. As the elevation value of
Vertex P5 is the closest to the average value of V1 and V2 among
this point set, we regard vertex P5 as active vertex V3, and then
generate ∆V1V2V3. Thus, The rendering effect of the triangle
mesh generated with improved BSP algorithm is smooth and
real enough.

Figure 3. An unplanar polygon

4.2 Optimization for Graphics Shape

In practical applications, we need to optimize graphics shape
preliminarily. For example, a building top vertices digitized
with Digital Photographical Workstation (namely DPW) should
be situated in the same plane in theory, however, for the sake of
elevation errors produced in the process of digitizing, they are
not. Thus, rendering effect is not satisfactory. So, the set of the
polygonal boundary vertices need to be preprocessed, that is, if
the elevation errors of adjacent vertices are within a limit, then
they will be adjusted to the same plane.

5. APPLICATIONS

This algorithm could be further used for building modeling in
addition to generating triangle mesh of area-shaped objects.
First, we generate triangle mesh with its top polygon data
digitized with DPW, and then convert them into a 3ds file.

Finally, we could edit, map this model in 3DS Max software,
and then convert it into X file format used in Direct 3D
rendering engine, or other formats for further applications. Thus,

for the development of 3D GIS software, some modules, such as
building model editing, could be replaced with 3DS Max
software, we may make the development of three-dimensional
software easier than ever.

6. CONCLUSIONS

Triangulation of polygon is of very importance in 3D GIS. A
recursive algorithm for triangulation of polygon based on BSP
tree idea is proposed in this paper. This algorithm uses BSP tree
idea. It is close in theory. It could be in common use. Therefore,
planar polygons with arbitrary convex or concave shapes could
be correctly triangulated with this algorithm. Furthermore, it is
suitable for complex polygons with islands, and unplanar
surface-shaped objects with relief undulation. So, it is rather
valuable in three-dimensional GIS applications.

ACKNOWLEDGMENTS

The research described in this paper was funded by ‘(01) 0302
Funded by Open Research Fund Program of LIESMARS’
founded by National Laboratory for Information Engineering in
Surveying, Mapping and Remote Sensing, China. In particular,
I would like to thank my advisor Professor Li Deren. Moreover,
I am thankful to Professor Zhuqing for his help.

REFERENCES

Arkin E. M., Held M., Mitchell J. S. B., and Skiena S. S., 1994.
Hamiltonian Triangulations for Fast Rendering. Second Annual
European Symposium on Algorithms, 855, pp.36–47.

Evans F., Steven S. Skiena, and Varshney A., 1996.
Optimizin-g Triangle Strips for Fast Rendering. In IEEE
Visualizat-ion’96 Proceedings, California, pp. 319–326.

MA Xiao-Hu, PAN Zhi-Geng, SHI Jiao-Ying, 1999. Delaunay.
Triangulation of Simple Polygon Based on Determination of
Convex-Concave Vertices. Journal of Computer Aided Design
and Computer Graphics. 11 (1), pp.1-3.

Siu-Wing Cheng, Jae-Sook Cheong, 2001. A Triangulation for
Optimal Strip Decomposition in Simple Polygons.
http://www.cse.cuhk.edu.hk/~acm-hk/activity/pg/ust-jscheong.p
df.

YANG Jie, 2000. Triangulation of Simple Polygon Based on
Det-ermination of Convex-Concave Vertices. Mini-Micro
System., 21 (9), pp.974-975.

P11 (100.0)

P12 (104.0)

P0 (116.0)

P1 (127.0)

P2 (132.0) P3 (132.0)

P4 (128.0)

P5 (122.0)

P6 (118.0)

P7 (115.0)

P8 (110.0)

P9 (105.0)

P10 (102.0)

IAPRS, VOLUME XXXIV, PART 2, COMMISSION II, Xi’an, Aug.20-23, 2002

 300

