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ABSTRACT: 
 
Photogrammetron represents a class of intelligent photogrammetric systems aiming at realizing a number of newly defined 
functionalities of intelligent photogrammetry that go beyond the traditional photogrammetry and the currently dominant digital one, 
including real-time photogrammetry in video surveillance, photogrammetry-enabled robots, intelligent multi-camera network for 
close-range photogrammetry. This paper addresses the geometric calibration of Photogrammetron I - the first type of 
Photogrammetron which is  designed to be a coherent stereo photogrammetric system in which two cameras are mounted on a 
physical base but driven by an intelligent agent architecture. The system calibration is divided into two parts: the in-lab calibration 
determines the fixed parameters in advance of system operation, and the in-situ calibration keeps tracking the free parameters in real-
time during system operation. In a video surveillance setup, prepared control points are tracked in stereo image sequences, so that the 
free parameters of the system can be continuously updated through iterative bundle adjustment and Karlman filtering. Two methods 
of calibration are distinguished: the strong stereo mode where a minimal set of parameters are tracked, and the weak stereo model 
where each camera is calibrated independently through tracking control points. 
 
 

1. INTRODUCTION TO PHOTOGRAMMETRON 

In order to break through the limitations of the current dominant 
digital photogrammetric systems, Photogrammetron has been 
proposed recently [Pan, 2002] as a new class of intelligent 
photogrammetric systems. It is designed to be an active stereo 
vision system driven by an intelligent software agent 
architecture, aiming at realizing a number of newly defined 
functionalities of intelligent photogrammetry. Some main 
functionalities that go beyond the traditional photogrammetry 
and the currently dominant digital one include real-time 
photogrammetry in video surveillance, photogrammetry-enabled 
robots, intelligent multi-camera network for close-range 
photogrammetry. Photogrammetron I as the first type of 
Photogrammetron is designed to be a coherent stereo 
photogrammetric system in which two cameras are mounted on 
a physical base, similar to a head-eye system in robot vision, but 
the stereo camera baseline length is changeable. This paper 
addresses the geometric calibration of Photogrammetron I. In 
the following discussions, we shall simply use the term 
Photogrammetron while we only confine our scope to 
Photogrammetron I. For the clarity of the modelling and 
discussion, we choose to study the video surveillance with 
photogrammetric functionalities as the underlying application. 
 
The calibration of Photogrammetron is far more complicated 
than just calibrating the cameras in traditional photogrammetry 
because Photogrammetron posses a self-contained automatically 
controlled physical structure driven by an intelligent agent 
software architecture. Physically, Photogrammetron as shown in 
Fig.1 is made up of a physical support base called the‘shoulder’, 
a pan-tilt unit called the ‘head’mounted on the shoulder, a plate 

mounted on the head called the ‘stereo camera plate’ or ‘stereo 
plate’simply, the left and right camera with their pan-tilt unit on 
top of the stereo base. Each pan-tilt unit has two angular 
freedoms: pan and tilt. In total, there are 9 freedoms: pan and 
tilt angles for each of the three pan-tilt units, the baseline length 
between two cameras, the focal length of each of the two 
cameras. Besides these freedoms, there are still a number of 
prefixed system parameters such as the geometry between the 
head and the stereo base, and between the stereo base and each 
of the camera pan-tilt units, as well as between a camera pan-tilt 
unit and its supported camera. Therefore, the whole parameter 
set of the system can be divided between two subsets: the free 
parameters and the fixed parameters. 
 
The system calibration of Photogrammetron is divided into two 
parts: the determination of the fixed parameters and of the free 
parameters. The calibration for the fixed parameters can be done 
in a laboratory in advance of the system operation, which shall 
be called the ‘in-lab’ calibration. The calibration for the free 
parameters has to be done in real-time during system operation, 
which shall be called the ‘in-situ’ calibration. 
 
Since various parts of Photogrammetron such as the head, 
stereo plate, the left pan-tilt unit and the left camera, the right 
pan-tilt unit and the right camera, are supposed to be always in 
motion in  the video surveillance setup, the free parameters have 
to be continuously tracked and updated through continuous 
image  tracking in stereo image sequences. The actual form of 
image  tracking may be uniform optical flow computation or  
tracking of sparse feature points only. 
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Figure 1. A geometric model of Photogrammetron I 

 
 

2. A GEOMETRIC MODEL OF 
PHOTOGRAMMETRON 

A basic structure of Photogrammetron  consists of 5 hardware 
parts:  the shoulder, the head, the stereo plate, the left camera 
and its pan-tilt unit and the right camera with its pan-tilt unit. 
We consider each of them as follows. 

 
2.1 The Shoulder 

This refers to the support of the system. It can be a still tripode 
or a vehicle with wheels or robot with legs. For the time being, 
we just assume the shoulder stays still relative to the 
surveillance environment. For this part, a Euclidean reference 

system XYZO − is assumed, where the Z axis corresponds 
to the vertical line pointing from the bottom to the top through 
the centre of the shoulder.  
 
2.2 The Head 

This is a pan-tilt unit  mounted on top of the shoulder. Relative 
to the shoulder, the head can pan an angular freedom ω , 
around the ZO − axis.  It also can tilt an angular freedom φ  
which is orthogonal to the pan angleω . 
 

2.3 The Stereo Plate 

This is a plate to support the two stereo cameras. The stereo 
plate is  fixed on top of the head. On top of the stereo plate the 
left and right camera pan-tilt units are symmetrically mounted. 
For simplicity, we shall call the left/right pan-titlt unit 
supporting the left/right camera the left/right unit. Since the 
stereo plate is fixed on top of the head, it therefore can tilt an 

angle φ . A reference system UVWS −  is assumed for the 

stereo plate. The origin S  is taken to be the apex of the tilt 

angle φ , and it is on the ZO − axis and with a distance  h  

from the origin Z . US −  axis is horizontal pointing from 
left to right, VS −  axis refers to the depth from the system 
toward the objects, WS − axis is pointing upwards. The 
transformation from the UVWS −  to XYZO − is defined 
by 
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2.4 The Left Camera and Its Pan-Tilt Unit 

On top of the stereo plate, the left and right pan-tilt unit  are 
placed along the US − axis, and they are symmetrically 
placed about the centre  - the WS − axis. Let C denote the 
perspective center of the left camera, and f the focal length. A 

reference system xyzC −  is assumed for the left camera, 

zC − axis is the principal axis of the camera pointing through 
the perspective center C  towards the scene. The image plane is 
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on back side of C . An image point is positioned with 
coordinates  ),,( fyx − . The principal point is located at 

),,( fyx cc − .  For the left unit supporting the left camera, 

there is a geometric centre  T ,  the pan angle α  and the tilt 
angle β . We must be aware that the perspective centre C  and 
the  unit centre do not coincide. And due to the discrepancy 
between the two centres, the perspective centre C is a function 
of the pan and tilt angles α  and β  as well as the focal length  

f , which may be expressed generally as  
 
 

 ),,,( fTCC βα=                                                      (5) 
 
 

A simple form of this function in the stereo plate reference 
system UVWS −  is 
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where dcba ,,, are constants and fixed once the camera is 

fixed on the unit, and βα RR , are two two-dimensional 

rotation matrices 
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Note that the image coordinate system generally has a rotation 
about the principal axis, which we denote here by γ . The 
transformation from the image coordinates to the stereo plate 
reference system is defined by 
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2.5 The Right Camera and Its Pan-Tilt Unit 

Similarly we have everything for the right camera and its pan-
tilt unit. Any element on the right camera or pan-tilt unit is 
denoted by x’ corresponding to its counter part x on the left 
camera or unit. Therefore for the right camera we have the 
perspective center 'C , the reference system '''' zyxC − , the 

focal length 'f , and the principal point )',','( fyx cc − . 

For the right pan-tilt unit, we have the unit centre  'T , pan 
angle 'α  and the title angle 'β  as well as the angle 'γ . 
 
The left and right pan-tilt units can translate but only 
symmetrically left-right about the central axis WS −  along 
the  US −  axis in accordance with the requirement on the 
stereo baseline length change due to different photogrammetric 
precision requirement. In general, we require the system to 
maintain 
 
 

sUU TT =−= '  , 'TT VV =  , 'TT WW =             (12) 
 
 
where s is a symbol denoting the distance from the left or right 
unit centre to the centre of the stereo plate, which is about the 
half of the baseline length. Note that a primary difference of 
Photogrammetron from general robots is that the baseline length  
is changeable and is controlled by the system. 
 
Although each of the left and right camera pan-tilt units has two 
angular freedoms, we distinguish between two general system 
modes: strong stereo mode versus weak stereo mode. On the 
strong stereo mode, two principal axes zC −  and '' zC −  
must be maintained coplanar， and that plane is called the 
principle epipolar plane. The two principal axes zC −  and 

'' zC −  form two angles θ  and 'θ  respectively with the 
baseline 'CC . In the weak stereo mode, we do not require the 
two principal axes be strictly coplanar, but the left and right 
camera should maintain overlapping views. We shall discuss the 
calibration for the two modes respectively. 
 
 

3. IN-LAB CALIBRATION OF FIXED PARAMETERS 

In the geometric model described above, there are fixed 
relations as follows: 



IAPRS, VOLUME XXXIV, PART 2, COMMISSION II, Xi’an, Aug.20-23,2002 

 372

1) the stereo plate is fixed on top of the head, so the distance 

parameter h is a constant; 
2) the left and right units can only translate in one dimension, 

so the other two distance parameters TT WV ,  and 

'' , TT WV  are constants; 
3) the left camera is fixed on top of the left unit, so the 

translations  and scaling dcba ,,, as expressed in 
equation (6) are constant, which mediate the influence of 
the pan and tilt angles of the unit to the perspective centre. 

 
The set of constant parameters is therefore defined as  
 
 

),,,,,,,,( '' dcbaWVWVh TTTT                            (13) 
 
 

The constant parameters  '' ,,,, TTTT WVWVh  can be 
measured through pure mechanical procedures, which we shall 
not elaborate here. The constants dcba ,,, are determinants 
of the perspective centre of the camera relative to the pan-tilt 
unit, which have to be determined using control information 
such as control points in a laboratory setup. However, the actual 
procedures for determining these constants can be the bundle 
adjustment using the perspective equations which is well 
established in the photogrammetry literature. 
 
In the following discussions, we assume these 9 constant 
parameters are known as precalibrated in laboratory before any 
actual application of Photogrammetron. 
 
 

4. IN-SITU CALIBRATION FOR THE STRONG 
STEREO MODE 

In the strong stereo mode, for the simplicity of the geometry, we 
freeze the tilt freedom of the left and right camera units to 
absolute zero, so the two principal axes are coplanar with the 

UVS −  plane.  The remaining pan angle of the left or right 
unit is now denoted by θ  and 'θ  respectively as shown in 
Fig.1, i.e. 
 
 

αθ = ,      '' απθ −= ,      0'== ββ                  (14) 
 
 
With the reference systems and geometric elements defined 
above, we can establish the stereo imaging equations. Take 

XYZO −  as the global reference system. At any time t ，an 
object point ),,,( tZYXP  is projected through the two 
cameras onto the left and right image points 

),',','('),,,,( tfyxptfyxp on the left and right images 

,', II the corresponding image values 

are ).,','('),,,( tyxItyxI The projective equation 

between P  and p can be expressed as  
 

CpSCOSOPP λ++==                                    (15) 

where λ  is a scalar. 
Written in analytical form, we have 
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where θR has the form of αR as defined in (7) with 

α replaced by θ , and 0R is a commuting matrix as defined in 
(9).   
 
Similarly we can derive the projective equation between P  
and 'p  for the right camera as 
 
 

'''' pCSCOSOPP λ++==                              (17) 
 
 
or in analytical form as 
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where 'λ  is a scalar and θR has the form of αR as defined in 

(7) with α replaced by 'θπ − . 
 
Let 
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we have 
 
















+
















=

















C

C

C

C

C

C

W
V
U

RR
hZ

Y
X

φω0
0

                                      (23) 

 
































=

















'

'

'

'

'

'

0
0

C

C

C

C

C

C

W
V
U

RR
hZ

Y
X

φω                                        (24) 

 
 
Equations (16) and (18) now can be rewritten as 
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Eliminating the scalar λ  and   'λ  from above equations 
results in the collinearity equations 
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and  
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For each object point we have 4 collinearity equations at time t . 
Note that there are only 7 free parameters which are controlled 
by the system: 
 
 

τθθφω )''( ffs=x                     (31) 
 
 

where τx means the transpose of vector x . 
 
Applying equations (6), (7), (8), (9), (11), (19), (20), (23), (24) 
into equations (27)-(30), we obtain the functional form of 

',',, yxyx : 
 

),,;,,',,,( ZYXfsFx θθφω=                         (32) 

),,;,,',,,( ZYXfsGy θθφω=                         (33) 

),,;',,',,,('' ZYXfsFx θθφω=                       (34) 

),,;',,',,,('' ZYXfsGy θθφω=                      (35) 
 
 
For target tracking, we must assume that the object points are 
also moving and every free parameter is also changing with time, 
so the collinearity equations should be written as 
 
 

));(),(),(;,,',,,()( ttZtYtXfsFtx θθφω=      (36) 
));(),(),(;,,',,,()( ttZtYtXfsGty θθφω=      (37) 

));(),(),(;',,',,,(')(' ttZtYtXfsFtx θθφω=   (38) 
));(),(),(;',,',,,(')(' ttZtYtXfsGty θθφω=  (39) 

 
 
However for system calibration, we assume a number of control 
points exist in the surveillance area, and they are either man-
made or extracted feature points, but they all fixed still. For 
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each such control points, we have 4 collinearity equations, 
being continuous in time t : 
 
 

);,,;,,',,,()( tZYXfsFtx θθφω=                  (40) 

);,,;,,',,,()( tZYXfsGty θθφω=                  (41) 

);,,;',,',,,(')(' tZYXfsFtx θθφω=               (42) 

);,,;',,',,,(')(' tZYXfsGty θθφω=               (43) 
 
 
There are basically two approaches for solving these equations 
for determining the 7 free parameters which themselves may 
change continuously in time. 
 
The first approach uses  2>n control points to form 

n4 collinearity equations of the form (40)-(43), and then solves 
for the 7 free parameters at any time point t . The actual 
procedure is similar to the bundle adjustment in analytical 
photogrammetry [Wang, 1990], but with the particular 
parameter set of (31). We shall not delve into the details of this 
approach as the bundle adjustment is well established in 
photogrammetry, and this particular bundle adjustment can be 
developed in a similar way. 
 
The second approach builds on top of the first approach, but 
also takes into account the continuity of the parameter variables 
and system dynamics as welll as  also take the system reading of 
these parameters as observations to the parameters themselves.  
The state transition equations and the observation equations of 
the Kalman filtering [Kalman, 1960] are written as 
 
 

)()()(),()( 1111 −−−− Γ+Φ= kkkkkk tttttt wxx              (44) 

)()()()( kkkk tttt vxz +Ψ=        )1( ≥k                  (45) 
 
 
or using simplified notations as 
 
 

1111, −−−− Γ+Φ= kkkkkk wxx
                                       (46) 

 kkkk vxz +Ψ=                        )1( ≥k                     (47) 
 
 
where )(tx  is the 7-dimensional parameter vector as defined 
by (31) at time ,t   also called the state vector of the system; k is 
the integer index of time, and satisfying 
 
 

∞<<<<<<∞− +− KK 11 kkk ttt                    (48) 
 
 

)(tw is m-dimensional dynamic noise vector; )(tz is l-

dimensional observation vector,     nl 47 +≤ , which 
includes system readings of the free parameters and image 
coordinates )',',,( yxyx of visible control points; )(tv is l-
dimensional observation noise vector. Note that not every free 
parameter or every control point is visible, so the observation 

vector can be incomplete data. ),( τtΦ is a 77 × non-
singular matrix, called the state transition matrix of the system; 

)(tΓ is a m×7 matrix, called the dynamic noise matrix; 

)(tΨ is a 77 × matrix, called the observation matrix. 

),( τtΦ has the following properties: 
 
 
(1) Itt =Φ ),(  (where I is an identity matrix)               (49) 

(2) ),(),( 11
1

kkkk tttt −−
− Φ=Φ                                     (50) 

(3) 
),(),(),( 2112, −−−− ΦΦ=Φ kkkkkk tttttt

              (51) 
 
 
The observation equations (45) include the linearized version of 
the collinearity equations (40)-(43) as well as the additional 
observation equations of the system readings for the parameters  

)(tx . We shall not delve into the detailed form of the state 
transition equations (44) and the observation equations (45).  

Let kx̂
 denote the estimate of )(tx at time kt , and 

kkk xxx ˆ~ −=
 denote the error of estimation. Assume the 

estimate kx̂
  is a linear function of the observation z , the 

linear least square estimation is achieved under the following 
criterion 
 
 

]~~[])ˆ)(ˆ[(min ττ
kkkkkk EE xxxxxx =−−        (52) 

 
 
Suppose we have made k observations kzzz ,,, 21 K  to the 
7-dimensional linear dynamic system of (44) through the l-
dimensional linear observation system of (45) from time 1 to 
time k. According to these k observation data, we can estimate 
the system state kx̂ at time k, and the actual estimation 
procedure has a particular form of Kalman filtering, 
 
 

)ˆ(ˆˆ 11,11, −−−− ΦΨ−+Φ= kkkkkkkkkk K xzxx
            (53) 

 

where kK
is called the weight matrix or gain matrix and is 

defined by the coefficient matrices of the state transition 
equations (44) and the observation equations (45) as well as the 

stochastic properties of the noises
}{},{ kk vw

.  We shall not 

delve into the detailed form of kK
and further details of the 

estimation procedure due to the space limitation. 
 
 
5. IN-SITU CALIBRATION FOR THE WEAK STEREO 

MODE 

In the weak stereo mode, each of the left or right pan-tilt unit 

has two angular freedoms βα , (or ',' βα  for the right 
camera) and the principal axis of the left camera and the right 
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one are not required to be coplanar. In this mode, the free 
parameter vector consists of 9 free parameters which may 
change in time: 
 

τβαβαφω )''( ffs=x         (54) 
 
There are two approaches for calibration in such a weak stereo 
mode: the first approach is a joint solution for estimating all the 
9 parameters simultaneously through a particular form of 
Kalman filtering as described in the previous section; the 
second approach is to estimate the absolute orientation and 
interior orientation for each camera independently using control 
points. Still in the second approach,  the continuity and 
dynamics of the system state parameters can be exploited 
through a Kalman filtering mechanism.  
 
 

6. CONCLUSIONS 

In this paper, a theory of geometric calibration of intelligent 
Photogrammetron is proposed upon a geometric model of 
Photogrammetron. Two system operating modes are 
distinguished: the strong stereo mode versus the weak stereo 
mode. In the strong stereo mode, the free parameter vector is 
made up of 7 parameters, while in the weak stereo mode each of 
the left or right pan-tilt unit has its own pan and tilt angular 
freedoms. A pure photogrammetris solution is a particular 
bundle adjustment using fixed control points. However the 
general solution is a particular Kalman filtering which builds on 
top of the bundle adjustment but extends to exploiting the 
continuity and dynamics of system motion. The theory proposed 
here is quite general, but any actual implementation has to take 
into account the actual physical structure and control 
mechanisms of the Photogrammetron system. 
 
This work was sponsored by the National Natural Science 
Foundation project No. 40171080, entitled “Intelligent 
Photogrammetron” of  China. 
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