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ABSTRACT: 
 
The spatial relationships of contours play important roles in many areas such as extracting topographic features from contour maps, 
automatically identifying elevations of scanned contours, et al.. In those areas, one key issue is making computers identify the 
relationships of contours. The spatial relationships of contours are usually represented by contour tree. Contour tree is essentially a 
tree structure which is a concept in graph theory. In this paper, some rules for identifing spatial relationships of contours are 
introduced on the basis of the knowledge of contour tree. One experiment of identifying hills from contour map is illuatrated to 
verify the correctness of the rules. 
 
 

1. INTRODUCTION 

Contour lines have been used for the representation of 
continuous variations of 3D phenomena on topographic maps 
for a long history. A contour is a line on a map which represents 
an imaginary line on the ground, all points of which are of equal 
elevation as referred to a specified common datum plane (Wu, 
1993, pp.22). Groups of contour lines have some characters 
which are non-intersection, parallelism and geometric similarity. 
These characters determine the spatial relationships of contour 
lines.  
 
The spatial relationships of contours play important roles in 
many areas such as extracting topographic features from 
contour maps, automatically identifying elevations of scanned 
contours, et al.. Identifying topographic features from contour 
maps is of essential importance for some applications such as 
automatic terrain generalization (Wu, 1999), autonomous 
navigation in natural terrain (Kweon and Kanade, 1994), and 
contour-based terrain reasoning (Cronin, 1995).  
 
People can easily recognize topographic features through 
interpreting contour lines drawn on paper map. In this process, 
knowledge of spatial relationships, geometry and elevations of 
contour lines play important roles. In order to make computers 
automatically interpret the contour maps which are stored in 
computers in digital format, those knowledge must be identified 
by computers. In this paper, we intend to use some rules defined 
on the basis of contour tree which well represent spatial 
relationships of contour lines. 
 
In section 2, the spatial relationships of contour lines are 
classified firstly. Then the theory of contour tree, which is the 
main way of representing the spatial relationships of contours, 
are introduced. On the basis of the knowledge of contour tree, 
some rules of representing the spatial relationships of contours 
are given out. One experiments of identifying topographic 
features using these rules is presented in section 3. The possible 
feature work is discussed in section 4. 

2. SOME RULES BASED ON CONTOUR TREE 

2.1 Classification of Spatial Relationships of Contour Lines 

In general, people think that there are two kinds of spatial 
relationships of contours: in and paratactic (Guo, 1995). Given 
two contours c1 and c2 in a map, if c1 is inside of the region 
formed by the line of c2, we call c1 and c2 hold in relationship. If 
the elevation of c1 is equal to the elevation of c2, we call c1 and 
c2 hold paratactic relationship. In fact, besides in and paratactic 
relationships, the more essential relationship contours hold is 
adjacent relationship. There isn’t a unique definition of spatial 
ajacent, because the defintion is based on applications (Anders, 
1997).  
 
2.2 Contour Tree 

At present, the main means to represent the spatial relationships 
of contours is contour tree. Contour tree was invented by 
(Boyell and Ruston, 1963), which is a kind of tree structure , an 
important structure in graph theory. A graph is a mathematical 
structure used to model systems where the relations between the 
objects in the systems play a dominant role. Terms used in the 
paper follow terminology of graph theory when possible. For 
detailed information concerning graph theory, readers may refer 
to (Bollobas, 1998; Wang, 1997). 
 
A contour tree T consists of a finite set V of objects called 
vertices, and a finite set E of objects called edges. Usually the 
vertices represent contour lines and the edges represent the 
adjacent relationship of the two vertices the edge links. A pair 
of vertices that determine an edge are adjacent vertices. The set 
of vertices adjacent to a vertex a ∈ T is the neighbourhood of a 
(Bollobas, 1998, pp.3). 
 
A contour map with sixteen contour lines and its corresponding 
contour tree are shown in Fig1. The sixteen vertices of the 
contour tree correspond to the sixteen contour lines on the map 
shown in Fig1(a). The contour 16 is the root of the contour tree. 
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It has two offsprings: contour 12 and 15, which are siblings 
each other (Kolman, et al., 2000, pp.246). 
 
The degree of a vertex of a contour tree is the number of edges 
having that vertex as an end point (Kolman, et al., 2000, 
pp.281). We denote degree (vi) as the degree of vertex vi. For 
every contour ci in a contour tree, we can obtain the total 
number of the neighbors of ci by means of the degree of ci. For 
example, the degree of contour 12 in Fig 1 is 4, which means 
contour 12 has four neighbors which are contour 16, 11, 2 and 
3.  
 
The level of a vertex of a contour tree T is the length of the 
shortest path (Wang, 1997, pp.206-219) from the root to this 
vertex, i.e., the least number of the edges from the root to this 
vertex. We denote level (vi) as the level of vertex vi. To compute 
the level of the vertices in a contour tree, we can use the 
algorithms used in the shortest path problem in graph theory. 
There are two methods often used, i.e., Dijkstra algorithm and 
Floyd algorithm (Wang, 1997, pp.206-219; Yin, et al., 1999, 
pp.283-290). Dijkstra algorithm is used to compute the shortest 
path from one vertex to another one in a graph. By contrast, 
Floyd algorithm is used to compute all the shortest path 
between every pair of vertices in a graph. Obviously, Floyd 
algorithm is more efficent in computing the level of every 
vertices in a contour tree.  
 
Acctually, the contour tree such as the one shown in Fig 1(b) is 
the graphic representation of the spatial relationships of 
contours. However, the contour tree should be stored in 
computers in some format so that computers can recognize it. 
The contour tree can be represented in computer as the 
adjacency matrix (Bollobas, 1998, pp.54; Wang, 1997, pp.105). 
The adjacency matrix A(T ) = (aij) of a contour tree T is a n × n 
matrix given by  
 
 

1  if vi vj ∈  E (T ) 
αij =  

0  otherwise. 
 
 

Where n is the number of contours, and vi  and vj are two 
contours. 
 
In Fig1, the contour 1 is adjacent to contour 6, so a16 = a61 = 1. 
The contour 1 isn’t adjacent to contour 5, so a15 = a51 = 0.  
 
Because the elements of A (T ) indicate the situation of adjacent 
relationship of contours, the value of the degree of every vertex 
is the sum of the value of every element of the line or column in 
A (T ). The line or column corresponds to this vertex (Wang, 
1997, pp.106). 
 
Now, we can give some rules on the basis of the above 
terminologies and definitions.  
 
2.3 Some Rules for Identifying Spatial Relationships of 

Contours 

Let C = {c1 , c2 , ..., cn} be a set of closed contours on a map. a, 
b ∈  C.  
 
z Rule 1: Enclosing rule 
If 

is_neighbor (a, b) ,  
level (a) = level (b )-1,  

Then  
a contains b , or b is inside of a. 

 
In Fig 1, the contour 16 contains other fifteen contours. 
 
z Rule 2: Paratactic rule 
If 

level (a) = level (b ),  
then 
 a and b hold paratactic relationship. 
 
In Fig 1, level (1) = level (5) = level (8), so contour 1, 5 and 8 
hold paratactic relationship. However, there is difference 
between the relationship of contour 1 and 5 and the one of 
contour 1 and 8, i.e., contour 1 and 5 are contained by the same 
contour 6, while contour 1 and 8 don’t contained by the same 
contour. To distinguish these two kinds of relationship, we give 
out the following two rules. 

 

   
 

    (a)           (b) 

 

Figure 1. A contour map and its corresponding contour tree
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z Rule 3: First paratactic rule 
If  

level (a) = level (b ),  
the length of the shortest path from a to b is 2, 

then 
a and b hold first paratactic relationship. 

 
In Fig 1, the contour 1 and contour 5 hold first paratactic 
relationship. 
 
z Rule 4: Second paratactic rule 
If  

level (a) = level (b ),  
the length of the shortest path from a to b is larger than 2, 

then 
a and b hold second paratactic relationship. 

 
In Fig 1, the contour 1 and contour 8 hold second paratactic 
relationship. 
 
z Rule 5: Local extremal elevation rule 
If 
 contour a isn’t the root of a contour tree, 

degree (a) = 1,  
then 
 a is a peak or pit. 
 
In Fig 1, the contour 1, 2, 3, 4, 5, 7, 8, 10 and 13 are peaks. 
 
These rules can be easily translated to a computer language and 
can be used in the process concerning spatial relationships of 
contours. 
 
 

3. IDENTIFYING HILLS FROM CONTOUR MAPS: 
PRELIMINARY EXPERIMENT 

In this section, we present an experiment to illustrate how to 
use the rules given in last section in the process of identifying 
hills from contour maps by computers. 
 
One of the prerequisites for identifing topographic features 
from contour maps is the formal definition of various 
topogrphic features. Currently, there hasn’t a good 
classification of landforms（Mark and Smith, 2001）. Two 
typical topographic features are hills and dales. Here we denote 
a hill is a group of contours which nest each other, and the 
elevation of every contour in the group is larger than the 
elevation of the contour containing it. Similarly, a dale is a 
group of contours which nest each other, and the elevation of 
every contour in the group is less than the elevation of the 
contour containing it. A peak is a contour with the largest 
elevation in the contours constituting one hill. A pit is a contour 
with the least elevation in the contours constituting one dale. 
Particularly, we call those hills or dales among which there is 
only one contour in every nesting level as simple hills or dales. 
Correspondingly, the peaks of simple hills are called simple 
peaks, and the pits of simple dales are called simple pits. 
 
Were the elevation attribute not considered or unknown, the 
contours constituting hills and the ones constituting dales have 
similar graphic characters. Therefore, in this experiment, we 
only identify hills from contour maps.  
 
In this experiment, a map with 24 contours is used, which is 
shown in Figure 2. The data are at the scale of 1: 50 000 and in 
vector format. The database in which the contours are stored is 

named as TempData. There are four steps in the process of 
identifying hills from contour maps in this experiment, i.e., 
 

(1) Computing all the adjacent relationship of contours 
(2) Computing the adjacent matrix of contour tree and 

degree and level of vertices 
(3) Identifying simple hills 
(4) Identifying other hills 
 
These four steps are introduced in the following.  
 

 

 
 

Figure 2. The original state of the contour map 
 

3.1 Computing All the Adjacent Relationship of Contours 

In the experiment, we use Voronoi diagram to obtain all the 
adjacent relationship of contours. Voronoi diagram is a 
geometrical constructure. It has been used in many scientific 
fields because of its interesting and surprising mathematical 
properties. In this step, we generated the Voronoi diagram of 
the contour lines shown in Fig 2. If there is a Voronoi edge 
between two contours, then the two contour hold adjacent 
relationship. Otherwise, they don’t. All of the adjacent 
relatioship is stored in an adjacency matrix. We denote this 
matrix as Adj. Correspondingly, the adjacency matrix of the 
contour tree is denoted as TreeAdj. The main difference 
between the matrix Adj and the matrix TreeAdj is that the latter 
only stores part of the adjacent relationship other than all the 
adjacent relationship.  
 
3.2 Computing the Adjacent Matrix of Contour Tree and 
Degree and Level of Verteices 
 
In the beginning of this step, the value of every element in the 
adjacency matrix TreeAdj of the contour tree is zero. Then we 
found the neighbourhood (see section 2.2) of the root of the 
contour tree by inspecting the value of the elements of the 
adjacency matrix Adj . If Adj (ci, r) = 1, where ci is a certain 
contour and r is the root, then ci is an element of the 
neighbourhood. let TreeAdj (ci, r) = 1. Having found the 
neighbourhood of the root, we continually found in the left 
contours the neighbourhood of the contours in the 
neighbourhood of the root, and aasign 1 to the value of the 
corresponding elements in TreeAdj. Repeat this process until all 
the contours were found.  
 
The value of the degree of every vertex is the sum of the value 
of every element of the line or column in the matrix TreeAdj. 
The line or column corresponds to that vertex. The value of the 
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level of every vertex was got by using the Floyd algorithm in 
this experiment. 
 
3.2 Identifying Simple Hills 

As mentioned in the beginning of section 3, simple hills are 
hills among which there is only one contour in every nesting 
level. In this step, we first identified all the peaks of hills in 
term of rule 5 given out in section 2. Second we identified the 
peaks of simple hills in term of rule 3 and 4. Third we 
identified other contours constituting the simple hills by means 
of adjacent relationship of contours. Finally the contours 
constituting simple hills were deleted from the database 
TempData.  
 
3.3 Identifying Other Hills 

This process consists of three sub-process. Firstly, find in the 
database TempData the contours with the largest level in 
contour tree. Take one contour from these contours, denote it as 
Cmax. Secondly, find those contours that hold first paratactic 
relationship with Cmax, then delete those contours from 
database TempData. Repeat the former two steps until the root 
was identified. This process can be seen as a process of flood 
submerging the hills gradually. 
 
Figure 3 and Figure 4 are two hardcopies of the experiment.  
 
 

 
 
 

Figure 3.  Having identified some hills 
 

 
 

Figure 4. Identified all the hills 
 

4. DISCUSSION AND FUTURE WORK  

In this paper, some rules for identifying spatial relationships of 
contours are presented. These rules are defined on the basis of 
the relavant knowledge about contour tree. We present an 
experiment of automatically identifying hills from contour 
maps by computers. The experiment indicate that the 
algorithms developed on the basis of these rules work well. 
  
Besides the area of extracting some topographic features from 
contour map, these rules can be used in other areas where 
spatial relationships of contours play roles. For instance, they 
can be used in the field of assignment of elevation to scanned 
contours (Wu, 1993), and the field of checking the quality of 
digitized contours (Liu, et al., 2001), etc. 
 
The rules presented in the paper are the most basic ones defined 
on the basis of contour tree. Nevertheless, the reality of the 
terrain differ in thousands of ways. If one want to indentify 
more complex topographic features, additional information 
such as morphology must be concerned. 
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