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ABSTRACT

During the 90s important progess has been made in the area of structure-from-motion. From a series of closely spaced
images a 3D model of the observed scene can now be reconstructed, without knowledge about the subsequent camera
positions or settings. From nothing but a video, the camera trajectory and scene shape are extracted. Progress has also
been important in the area of structured light techniques. Rather than having to use slow and/or bulky laser scanners,
compact one-shot systems have been developed. Upon projection of a pattern onto the scene, its 3D shape and texture can
be extracted from a single image. This paper presents recent extensions on both strands, that have a common theme: how
to cope with large baseline conditions. In the case of shape-from-video we discuss ways to find correspondences and,
hence, extract 3D shapes even when the images are taken far apart. In the case of structured light, the problem solved is
how to combine partial 3D patches into complete models, without a good initialisation of their relative poses.

1 INTRODUCTION

During the last few years, low-cost and user-friendly so-
lutions for 3D modeling have become available. Shape-
from-video (Armstrong 1994, Heyden 1997, Pollefeys
1998, Hartley 2000) extracts 3D shapes and their textures
from video sequences as the only input. One-shot struc-
tured light techniques (Vuylsteke 1990, Proesmans 1996,
Chia 1996, Eyetronics www) get such information from a
single image, but need the projection of a special pattern.
These techniques have the advantage that they are cheaper
than traditional solutions like dedicated multi-camera rigs
or laser scanners, as they only require off-the-shelf hard-
ware. Moreover, they offer more flexibility in terms of
portability and the range of object sizes they can handle.

This paper presents ongoing work on two different, but
strongly related extensions of such systems.

Wide-baseline image matching: Shape-from-video
requires large overlap between subsequent frames.
Often, one would like to reconstruct from a small
number of stills, taken from very different view-
points. Based on local, viewpoint invariant features,
wide-baseline matching is made possible, and hence
the viewpoints can be farther apart.

Crude registration of 3D patches: Automatic registra-
tion algorithms for 3D patches such as ICP require
good initial, relative positions and orientations of the
patches to work. Completely automatic solutions to
the 3D puzzle of putting together a set of unstructured
3D patches requires that a first, crude registration
also takes place automatically.

2 WIDE-BASELINE IMAGE MATCHING

2.1 Task description

The 90s have witnessed the appearance of self-calibration
techniques in structure-from-motion. A series of images is
the only input such systems need to determine the camera
motion and the evolution of the camera settings, as well
as the 3D shape (up to an unknown scale) of the scene. By
now, several approaches for such self-calibration have been
developed and several systems have been proposed (Arm-
strong 1994, Heyden 1997, Hartley 2000, Pollefeys 1998).
They start with the tracking of interest points through a
sequence of views. The consistency of their image pro-
jections with a rigid 3D structure imposes constraints that
allow to extract the cameras and the 3D shape of the cloud
of interest points. The matching of these initial interest
points will be referred to as sparse correspondence search.
After the matching of the interest points, and the self-
calibration, strong multi-view constraints between the im-
ages are available. These ease the search for many more
correspondences. For one thing, a further search can be re-
stricted to epipolar lines. In our approach (Pollefeys 1998),
we go after pixelwise matches. This stage is referred to as
dense correspondence search. These additional matches
result in a detailed reconstruction of the 3D shape.

Although 3D reconstructions can in principle be made
from a limited number of stills, these systems tend to only
work effectively if the images have much overlap and are
offered in the order of a continuous camera motion This is
underlined by the name ‘shape-from-video’. For instance,
we have tested our system (Pollefeys 1998) to make 3D
records of archaeological, stratigraphic layers during ex-
cavations. A large part of the scene consists of sand and
there is a general lack of points of interest. When walk-
ing around the dig, it proved necessary to take images less
than �� apart. In such application, this is not always pos-
sible due to obstacles, and it disturbs the normal progress



Figure 1: Two images of the same scene, but taken from
very different viewing directions.

of the excavations, as the image acquisition takes too much
time, even when the images are taken in the form of a video
sequence. It would be very advantageous, if the number of
images can be limited to about 10 or so. These images
would still cover the whole scene, but would be taken from
substantially different viewpoints. Such ‘wide baseline’
images could also be taken with a digital photo camera
rather than a video camera, leading to higher resolution
imagery.

In summary, extending the shape-from-video technique
to wide baseline conditions implies that both the sparse
and the dense correspondence search have to be success-
ful on images taken from very different viewpoints. The
self-calibration procedure itself remains essentially iden-
tical. In our system, this is primarily based on the abso-
lute quadric approach proposed by Triggs (Triggs 1997).
Next, we describe the adapted versions of the correspon-
dence steps.

2.2 Approach for sparse correspondence search

Consider the wide baseline image pair of fig. 1. The two
images have been taken from very different viewing direc-
tions. Stereo and shape-from-video systems will most of-
ten not even get started in such cases, as correspondences
are difficult to find.

As already mentioned, the shape-from-video approach
splits the correspondence problem into two stages. The
first stage determines correspondences for a relatively
sparse set of features, usually corners. In the shape-from-
video technique, the matching of corners is based on look-
ing for corners within a region around the same position
in the other image, and a selection on the basis of a nor-
malised cross-relation of the surrounding intensity pat-
terns. Both parts of this strategy will fail under the in-
tended wide baseline conditions. The corresponding point
may basically lie anywhere in the other image, and will not
be found close to its original position. The use of simple
cross-correlation will not suffice to cater for the change in
corner patterns due to stronger changes in viewpoint and
illumination. The next paragraphs describe an alternative
strategy, that is better suited.

When looking for initial features to match, we should fo-
cus on local structures. Otherwise, occlusions and chang-
ing backgrounds will cause problems, certainly under wide
baseline conditions. Here, we look at small regions, con-
structed around or near interest points. If these regions
are to be matched, they ought to cover the same part of
the scene in the different views. Hence, they have to take
on different shapes in the different images. The most im-
portant aspect of the strategy proposed here is that the re-
gion extraction works on the basis of individual images, i.e.
without any knowledge about the other images. This prop-
erty is key to avoiding a slow and combinatoric search for
matches. In the proposed scheme regions are constructed
in one go based on a single image, instead of by selecting
a region in one image and then trying to find a match by
deforming and relocating a region in the other image un-
til some matching score surpasses a threshold. Here, the
corresponding region in the second image is extracted in-
dependently, before one even attempts to match regions.
The crux of the matter is that every step in the region ex-
traction is invariant under the image variations one wants
to be robust against. This is discussed in more detail next.

On the one hand the viewpoint may strongly change.
Hence, the extraction has to survive affine deformations
of the regions, not just in-plane rotations and translations.
In fact, affine transformations also not fully cover the ob-
served changes. This model will only suffice for regions
that are sufficiently small and planar. We assume that a
reasonable number of such regions will be found, an ex-
pectation borne out in practice. On the other hand, strong
changes in illumination conditions may occur between the
views. The chance of this happening will actually grow
with the angle over which the camera rotates. The relative
contributions of light sources will change more than in the
frame-to-frame changes in a video. We model the effects
of changing illumination by scaling the three colour bands
������� with different scale factors and by adding dif-
ferent offsets. Our local feature extraction should also be
immune against such photometric changes.

If we want to construct regions that are in correspondence



Figure 2: ‘invariant neighbourhoods’ that were extracted
for the images in fig. 1. Only regions are shown for which a
corresponding partner in the other image has been found,
but the regions in the two images have been extracted with-
out knowledge about the other image.

irrespective of these changes and that are extracted inde-
pendently, every step in their construction ought to be in-
variant under both the geometric and photometric trans-
formations just described. A detailed description of these
construction methods is out of the scope of this paper, and
the interested reader is referred to papers specialised on
the subject (Tuytelaars 1999, Tuytelaars 2000). As men-
tioned before, these constructions allow the computer to
extract the regions in the two views completely indepen-
dently. After they have been constructed, they can be
matched efficiently on the basis of features that are ex-
tracted from the colour patterns that they enclose. These
features again are invariant under both the geometric and
the photometric transformations considered. To be a bit
more precise, a feature vector of moment invariants is used.
Fig. 2 shows some of the regions that have been extracted
for fig. 1. We refer to the regions as ‘invariant neighbour-
hoods’. Recently, several additional construction methods
have been proposed by other researchers (Baumberg 2000,
Matas 2001).

Also under the wide baseline version of shape-from-video,
maybe better referred to as ‘shape-from-stills’, one is inter-
ested in finding correspondences between more than two

Figure 3: Top row: views 1 and 2 of a bookshelf scene, with
the 47 invariant neighbourhoods that have been matched
indicated. Bottom row: the 41 matched invariant neigh-
bourhoods for views 1 and 3 of the same scene.

images. The previously described wide-baseline stereo
matching approach is well suited for producing many fea-
ture matches between pairs of views that may be quite dif-
ferent. In practice, it actually is far from certain that the
corresponding feature in another view will also be con-
structed by the system. Hence, the probability of extracting
all correspondences for a feature in all views of an image
set quickly decreases with the amount of views. More-
over, there is a chance of matching wrong features. For in-
stance, let us suppose we are given 3 views ��, �� and ��.
Although the method may find matches between the view
pair ��� �� and also between the view pair ��� ��, these two
sets of matches will often substantially differ and a small
number of common features between all three views may
result. Figure 3 shows 3 views and the matches found be-
tween the pairs ��� �� and ��� ��. Fig. 4 shows the matches
that these pairs have in common. Whereas more than 40
matches were found between the pairs of fig. 3, the number
of matches between all three views has dropped sharply, to
only 16. When we consider 4 or 5 views, the situation can
deteriorate further, and only a few, if any, features may be
put in correspondence among all the views (even though
there may be sufficient overlap between all the views).

Our most recent developments are devoted to counteract
this problem. The approach is founded on two main ideas.
Firstly, it is possible to exploit the information supplied
by a correct match in order to generate many other correct
matches. Suppose there is a feature �� in view �� which
is matched to its corresponding feature �� in view ��, and
a feature �� in �� which could not get matched to its cor-
responding feature in �� (eg: the corresponding invariant
neighbourhood�� has not been extracted, or maybe it has
been extracted but the matching failed). If �� and �� are
spatially close and lie on the same physical surface, then
they will probably be mapped to �� by similar affine trans-
formations. Hence, we can project �� in �� via the affine



Figure 4: The features that could be matched in each of the
3 views of fig. 3. This intersection of the pairwise matching
sets is quite small: only 16 features remain.

transformation mapping �� to �� and get a first approx-
imation of the real ��. This approximation can then be
refined by maximising the similarity between �� and the
deformed ��. We call this process region propagation. If
�� is not close to ��, or not on the same physical surface,
a good similarity is unlikely to arise between the generated
region and ��, so this case can be detected and the propa-
gated region rejected. The propagation approach strongly
increases the probability that a feature will be matched be-
tween a pair of views, as it suffices that at least one feature
in its neighborhood is correctly matched. As a result, also
the probability of finding matches among all images of a
set increases.

The second idea to obtain good quality multiview feature
correspondences is to exploit redundant sets of matches be-
tween view pairs, or put differently, the transitivity prop-
erty of valid matches. In our 3 view example, instead of
only matching between the view pairs ��� �� and ��� ��,
we can also match 2 to 3. This introduces precious, addi-
tional information. For example, if a feature gets matched
in ��� �� but not in ��� ��, we can look if it is matched in
��� ��. If it is, at least one of these conclusions is wrong.
Following a majority vote, we can conclude that the lack of
a match in ��� �� was a failure and obtain a correct feature
correspondence along the three views.

In summary, starting from pairwise matches, many more
can be generated. Of course, the validity of propagated
and implied matches is an issue, and one has to be careful
not to introduce erroneous information. More elaborated
schemes to achieve this are the subject of a forthcoming
paper, which currently is under preparation. The strategies
proposed here are akin to recent work by Schaffalitzky and
Zisserman (Schaffalitzky 2002). In contrast to their work,
there is less emphasis on computational efficiency. In par-
ticular, adding transitivity reasoning to the propagation of
matches renders our approach slower, but it also adds to
the performance. The combined effect of propagation and
transitivity reasoning for our example is illustrated in fig. 5.
The number of matches along the three views has more
than tripled.

2.3 Approach for dense correspondence search

The matching of invariant neighbourhoods is only the first
step in the search for correspondences. Good 3D models
require the selection of dense, pixelwise correspondences.
In the shape-from-video pipeline, the initial, sparse cor-
ner matches provide epipolar constraints, that simplify the
subsequent dense correspondence search. Within this wide
baseline setting, it are the invariant neighbourhoods which
provide the epipolar constraints. But also with these con-
straints in place, dense correspondence search under wide
baseline conditions requires adaptations. Although our
current dense correspondence algorithm (Van Meerbergen
2002), which is based on a kind of dynamic path search
along epipolar lines, performs quite well under changes
that are a bit larger than the ones between subsequent video



Figure 5: The features that could be matched in each of the
3 views of fig. 4 after propagation and transitivity reason-
ing. The number of matches has been increased to 58.

frames, it nevertheless has difficulties coping with more
extreme cases.

Under wide baseline conditions, disparities tend to get
larger, a smaller part of the scene is visible to both cam-
eras, and intensities of corresponding pixels vary more. In
order to better cope with such challenges, we propose a
scheme that is based on the coupled evolution of Partial
Differential Equations. This approach is described in more
detail in a paper by Strecha et al. (Strecha 2002). The point
of departure of this method is a PDE-based solution to
optical flow, proposed earlier by Proesmans et al. (Proes-
mans 1994). In a recent benchmark comparison between
different optical flow techniques, this method performed
particularly well (McCane 2001). An important difference
with classical optical flow is that the search for correspon-
dences is ‘bi-local’, in that spatio-temporal derivatives are
taken at two different points in the two images. Dispari-
ties or motions are subdivided into a current estimate and
a residue, which is reduced as the iterative process works
its way towards the solution. This decomposition makes it
possible to focus on the smaller residue, which is in bet-
ter agreement with the linearisation that is behind optical
flow. The non-linear diffusion scheme in the Proesmans
et al approach imposes smoothness of nearby disparities at
most places – an action which can be regarded as the dense
counterpart of propagation – but simultaneously allows for
the introduction of discontinuities in the disparity map.

The method of Strecha et al. (Strecha 2002) generalises
this approach to multiple views. The extraction of the dif-
ferent disparities is coupled through the fact that all cor-
responding image positions ought to be compatible with
the same 3D positions. The effect of this coupling can be
considered the dense counterpart of the sparse transitivity
reasoning. Moreover, the traditional optical flow constraint
that corresponding pixels are assumed to have the same in-
tensities, is relaxed. The system expects the same inten-
sities up to scaling, where the scaling factor should vary
smoothly between neighbouring pixels at most places.

2.4 Experiments

Fig. 6 shows three images of the left corner of the town hall
of Leuven. These images are too far apart for our shape-
from-video process to get started with the corner match-
ing. A sufficient number of invariant neighbourhoods can
be matched, however, and the PDE-based dense correspon-
dence search succeeds in finding matches for most other
pixels. Three views of the resulting 3D model are shown
in fig. 7. The result looks quite convincing, even for such a
convoluted surface, where parts easily get occluded in sev-
eral views. This problem of holes in the model precluded
us from taking the images even farther apart.

Fig. 8 shows three images of an excavation layer, acquired
at the Sagalassos site in Turkey. This is one of the largest
scale excavations currently ongoing in the Mediterranean,
under the leadership of prof. Marc Waelkens. These im-



Figure 6: Three input images of the ornamental facade of
the town hall in Leuven. The images are too far apart for
our shape-from-video process to match features between
the views. Figure 7: Three reconstructions extracted from the rela-

tively wide baseline images of fig. 6.



Figure 8: Three input images of an excavation layer at
an archaeological site. The images are too far apart for
our shape-from-video process to match features between
the views.

Figure 9: The reconstruction extracted from the relatively
wide baseline images of fig. 8, with and without texture.

ages have less structure than the ones of the town hall and
are too far apart for our shape-from-video process to get
its corner matching started successfully. Again, invariant
neighbourhoods haven been matched and the PDE-based
dense correspondence search succeeded in finding matches
for most other pixels. A side view of the resulting 3D
model is shown in fig. 9, with and without the texture.

3 AUTOMATIC, CRUDE REGISTRATION OF 3D
PATCHES

3.1 Task description

If partial 3D reconstructions have already been produced
from different photo sets, model completion may better be
done in 3D. Similarly, there are a new generation of struc-
tured light techniques that generate partial, 3D patches
from each picture that is taken. If there is sufficient over-
lap between the 3D patches, they can be fitted together to
build a single, complete shape model. This fitting together
of patches is usually referred to as ‘registration’.

The state-of-the-art in 3D registration is similar to that in
2D. Several, excellent methods have been proposed to pre-
cisely fit together partial, 3D reconstructions from initial



positions that are almost in correct relative positions (Besl
1992, Chen 1991, Viola 1995). Distances between corre-
sponding points on different patches are small in that case.
Such automatic fine registration is very important, as it is
usually easier to manually position the 3D patches more or
less right, than it is to perform the fine docking by hand. Of
course, it would be nicer if also the initial, crude position-
ing could be done by the computer, as this would render
the whole registration automatic. Also, if the 3D patches
are presented to the system as an unstructured set, it will in
many cases be difficult to find out which patches would fit.
The problem becomes a 3D puzzle. Performing also crude
registration automatically is the very goal of the work de-
scribed next.

Much like with a normal, 2D puzzle the pieces can be put
together on the basis of two complementary types of in-
formation. On the one hand there is their shapes, which
should match. Here, it is not a matter of outlines that
should tally, but the 3D shapes ought to be the same for
the part where the patches overlap. On the other hand, the
surface may contain texture. If this is captured by the struc-
tured light system, then it may yield very effective clues as
well. Even more so, in cases where the shape does not al-
low to build an unambiguous reconstruction for reasons of
symmetry, the texture may break this symmetry.

3.2 Approach for geometry-based registration

Assume one has to find matches between overlapping, 3D
patches. These patches overlap only partially. A naive way
to approach the problem would be to take any pair, and to
search for a Euclidean motion in 3D that generates a good
fit. This process would be prohibitively slow.

Again, invariants have proven instrumental in the devel-
opment of methods that achieve such crude registration
from arbitrary, initial 3D patch positions. They use spe-
cial points or curves on the surface, which are charac-
terised with invariants (Feldmar 1994, Johnson 1997). A
feature type that we have found to be particularly useful
are bitangent curves. They are interesting, because they
are invariant under Euclidean, affine, and even projective
transformations. Moreover, the curve pairs can be given
simple, invariant descriptions, especially in the case of Eu-
clidean and affine transformations. These descriptions re-
quire only first derivatives (Vanden Wyngaerd 1999). Bi-
tangent curves are formed as follows. Suppose a plane
touches the surface at two points (i.e. it is a ‘bitangent
plane’). Now one rolls this plane over the surface so that it
keeps in touch at two points. This yields pairs of bitangent
curves, as illustrated in figure 10.

For the computation of bitangent curves we construct a
dual surface. Rothwell (Rothwell 1994) already used dual
representations of planar curves to find pairs of bitangent
points. In that case, the dual is a curve and a bitangent
point pair corresponds to a self-intersection of the dual.
Here we use a direct extension of this idea for surfaces.

���
���
���
���

������

Figure 10: Bitangent planes can roll over the surface,
thereby describing pairs of bitangent curves.

For every point� of the surface the tangent plane is calcu-
lated. This tangent plane can be represented by three pa-
rameters. These three parameters are used to create a three-
dimensional dual point. Replacing all surface points by
their dual results in a dual surface. Since bitangent points
have the same tangent plane, they have the same dual point
and the bitangent curve pairs correspond to curves of self-
intersection of the dual surface. Figure 11 shows an exam-
ple of such a dual surface.

(a) (b)

Figure 11: (a) An example surface. (b) View of its dual
surface. The dual surface is constructed by replacing all
points by their duals. As described in the text, the dual
point of a surface point� represents its tangent plane.

In our approach, crude registration is carried out through
the matching of bitangent curve pairs on the different
patches. In order to support efficient curve matching and to
find point correspondences between different patches, we
use an invariant description of the bitangent curve pairs. In
our patch registration problem, invariance under 3D rota-
tion and translation suffices. The bitangent curves are char-
acterized by invariant signatures, which express an invari-
ant as a function of an invariant parameter. A problem with
signatures of single space curves is that they may require
higher derivatives, such as the 2nd and 3rd derivatives for
curvature and torsion in the Euclidean case (Mokhtarian
1997). Semi-differential invariants (Van Gool 1992) use
lower order derivatives in more than one point. Pajdla and
Van Gool (Pajdla 1995) used them for Euclidean registra-
tion of space curves. In general, semi-differential invari-
ants use fixed reference points in combination with a vary-
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Figure 12: A bitangent point pair ���� �� slides along
the curve pair. The same parameterization can be used
for both curves which simplifies calculation of invariants.
We compute the distance between the bitangent point pair
������ as it slides along the curves. (b) An invariant sig-
nature of a bitangent curve pair expresses the distance be-
tween the points as function of the arclength of the longest
curve of the pair.

ing point. This introduces the problem that an expression
is only invariant if the same reference point is used. In
the case of bitangent curve pairs, the reference point can
be the corresponding bitangent point on the other curve,
thereby further simplifying the construction of stable in-
variant signatures. Hence, two points are combined that
slide together along the bitangent curves.

In the Euclidean case the distance between bitangent points
is invariant. The Euclidean arclength serves as an invari-
ant parametrization. A single parametrization is used for
both curves, for which we use the arclength of the longest
curve of the pair. By computing the distance as the bitan-
gent point pair slides along the curves, we get an invariant
signature as illustrated in figure 12. These signatures are
well suited for the matching of curves found on different
patches. Rather than trying to directly match different sur-
face patches, the goal is to match their most salient bitan-
gent curves. In order to render the process more efficient
and more robust, the search for matching signatures starts
with the 15 longest bitangent curves. For efficiency, this
length is measured as the number of sample points of the
self-intersection curve in the dual space. Only these curves
will be converted into bitangent curve pairs. This proce-
dure does not exactly select the bitangent curves that have
the longest arclength, but it gives a fair approximation.

The matching can be done efficiently by matching their in-
variant signatures. As a criterion, we use the ��-norm.
As it may very well happen that only parts of bitangent
curves are found on each of the patches, the signatures are
divided into segments of equal length and these segments
are matched. For efficient comparison, the signatures on
different surfaces are resampled with the same constant ar-
clength between sample points. Finding the best match-
ing segments between two signatures is done by having a
segment of the first signature slide along the second. No
guarantee exists that corresponding bitangent curve pairs
on different surfaces are parameterized in the same direc-
tion. This means that the starting point and ending point of
the signatures can be inverted. We take this possibility into

account in the matching process by checking whether the
signature increases or decreases over the segment.

A signature segment as defined in the previous paragraph
corresponds to two 3D curve segments, one on each curve
of the bitangent curve pair. Consequently, its endpoints de-
fine four points on the surface patch. If a pair of signature
segments is matched successfully, this suggests a match
between 4 points on the two surface patches. These typi-
cally yield enough information to obtain a crude estimate
for the transformation between the patches. Every match-
ing signature segment provides us with a candidate trans-
formation. Signature matches are ranked according to their
��-norm. However, only looking at the ��-norm does not
suffice to select the best transformation candidate because
signatures can match exactly without corresponding to the
correct transformation. A typical example is a left-right
symmetric face. Bitangent curve pairs will be symmetric,
and signature segments from the left side can be matched
exactly with the ones on the right side. The transformation
implied by left-right mismatched signatures will result in
noses pointing in the opposite direction. In order to elim-
inate these ambiguities, a verification step is done on the
best matching signature segments. After a good signature
match is found, it is checked by applying the correspond-
ing transformation and by verifying how well the surfaces
‘fit’.

3.3 Approach for texture-based registration

Wide baseline matching between 3D patches can also be
based on their surface texture, rather than their 3D shape.
A direct extension of the previous ideas would be to ex-
tract intensity or colour edges in the texture maps, which
correspond to space curves on the patch surfaces. Such
curves can then be matched, as e.g. proposed by Pajdla and
Van Gool (Pajdla 1995). Here we follow a different and
more robust strategy. The invariant neighbourhoods are
used again. This makes us less dependent on the presence
and clean extraction of edges in the texture maps. This
also renders the features more local and therefore better
suited for cases with limited overlap between patches. The
invariant neighbourhoods can cope with the deformations
that may exist between different texture maps. The actual
matching is simple then. Invariant neighbourhoods are ex-
tracted from the texture maps of the patches, are matched
based on their feature vectors of moment invariants, and
from each of the successfully matched neighbourhoods a
few points are selected (e.g. the center point of the neigh-
bourhood). Next, a 3D Euclidean motion is determined
that minimises the sum of distances between the corre-
sponding points of corresponding neighbourhoods. This
transformation is computed with Horn’s quaternion based
method (Horn 1987).

3.4 Experiments

A first example shows the matching of 3D patches based
on shape. The patches are shown in fig. 13 and belong



to the well-known Stanford bunny, typically used as a
demo object by the computer graphics community (Stan-
ford 3D Scanning Repository). The bitangent curves of
these patches were extracted and then matched based on
their invariant signatures. Fig. 14 shows the bitangent
curves for the first view. The automatically registered
bunny data is shown in fig. 15. Note that this completed
model is the result of the automated ‘crude registration’. A
fine registration based on ICP or another technique can be
used to refine it. Nevertheless, it already looks quite con-
vincing. The automatic matching (incl. bitangent curve
extraction) took about 9 min. on a Pentium III 1.1 GHz.

A second example illustrates 3D patch matching on the ba-
sis of the texture maps, i.e. on the basis of invariant neigh-
bourhoods extracted from these. It goes without saying
that for this technique to be useful the 3D acquisition de-
vice should also capture the surface texture. We have used
Eyetronics’ ShapeWare (Eyetronics www). We demon-
strate our approach for a globe. This is an example where
a shape-based approach is doomed to fail, due to the high
degree of shape symmetry. The texture with a represen-
tation of the continents and oceans breaks this symmetry
and makes it possible to automatically arrive at a complete
compilation of the object model. Fig. 16 shows two of
the 48 patches that were captured separately. As can be
seen, the overlap is rather small. Yet, more than 200 corre-
sponding invariant neighbourhoods could be found (with-
out propagation and transitivity reasoning in this case). A
detailed cutout of both patches with the matching neigh-
bourhoods is shown in fig. 17. The globe could be re-
constructed automatically based on the texture approach
alone. A view of the result is shown in fig. 18. Just
as in the case of shape-based registration, it is advisable
to apply a texture-based fine registration after this rather
crude stage. Johnson and Kang have proposed an approach
that could serve this purpose (Johnson 1999). This second
stage should then also take care of texture blending. As
can be seen in fig. 18 the original patches in our recon-
struction can still be distinguished by their differences in
texture intensities.

4 CONCLUSIONS AND FUTURE WORK

Three-dimensional reconstruction often introduces ‘wide
baseline’ problems. This can be the case at the point where
one has to find correspondences between the 2D input
views, or when one has to register partial 3D reconstruc-
tions. We have proposed solutions to both 2D and 3D wide
baseline matching problems. Ongoing work is mainly fo-
cused on issues of efficiency. A stronger integration of 2D
and 3D techniques remains to be explored.
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Figure 13: Range data from the Stanford bunny.
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Figure 14: Bitangent curve pairs on the first patch of the
bunny. (a) 3072 curve pairs are detected. (b) Here we only
the 15 longest curve pairs. These are the ones that are used
for matching.

Figure 15: Two views on the Stanford bunny after bitangent
based crude registration of the range data in fig.13.

Figure 16: Two patches of a globe out of a total of 48, that
were acquired in 3D separately.

Figure 17: Detailed cutouts of the two patches shown
in fig. 16. The invariant neighbourhoods that could be
matched in these cutouts are highlighted.

Figure 18: View on the automatically completed globe
model. Only texture information was used. In fact, shape
would not suffice for this highly symmetric object.
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