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ABSTRACT: 
 
In digital photogrammetry applications such as digital elevation model generation (DEM), demanding highly detailed images, it is 
often not feasible or sometimes possible to acquire images of such high resolution by just using hardware (high precision optics and 
charged-coupled devices). Instead, image processing methods may be used to construct a high-resolution image from multiple, 
degraded, low-resolution images. This paper presents an algorithm which is device independent and can increase the spatial 
resolution of a sub-sampled, and thus aliased, image sequence. This algorithm is illustrated with applications which show its 
implementation using harmonic theory. The proposed method is of moderate computational complexity and has proved to be robust 
under noisy circumstances. In order to validate the algorithm’s effectiveness as a photogrammetric tool, it was used in a series of 
three-dimensional tests using images of objects of known geometry. Stereoscopy sets of left and right images were taken of these 
objects, DEMs were created using both the original images and images enhanced by the algorithm, and these indicated its potential 
use for photogrammetric surface modelling. 
 

1. INTRODUCTION 
 
Photogrammetry allows the determination of the size and shape 
of objects from measurements made on remotely sensed 
images. The advent of digital technology has produced 
opportunities for new and diverse applications of this discipline 
to be undertaken which were not feasible with traditional 
photogrammetric techniques. Automated generation of DEMs. 
(Digital Elevation Models) is one of such applications. 
Digital photogrammetry is sometimes limited by the cost of 
acquiring digital imagery at appropriate resolutions. Low-
resolution imagery is relatively inexpensive to acquire, but may 
not provide the accuracy required, especially in subsequent 
processing to derive DEMs.  
This paper presents an algorithm which is device independent 
and can increase the spatial resolution of an undersampled, and 
thus aliased, image sequence.  It is assumed that these low-
resolution images are degraded, noisy, and displaced by sub-
pixels shifts or translations with respect to a reference frame. 
Global translations between random frames in the sequence 
provide information that can be used to reduce some of the 
aliasing present in the frames. Translations vectors for each 
frame are estimated via area-based image registration 
algorithms. The proposed method is illustrated with 
applications which show its implementation using Harmonic 
theory to model the grey-scale surface of the enhanced image.  
In order to validate the algorithm’s effectiveness as a 
photogrammetric tool, it was used in a series of three-
dimensional tests using images of objects of known geometry. 
Stereoscopy sets of left and right images were taken of these 
objects, DEMs were created using both the original images and 
images enhanced by the algorithm. These indicated its potential 
use for photogrammetric surface modelling. 
 
 

2. DIGITAL IMAGE RESOLUTION ENHANCEMENT 
 
Developments into the enhancement of the resolution of digital 
images can be divided into two main streams, that is, hardware 
or software solutions. Hardware solutions may involve 
modifications to the cameras used for image acquisition while 
software solutions may relate to different aspects of image 
processing, including image registration, reconstruction, 
restoration, synthesis and image fusion. 
The enhancement of the resolution of digital images via 
hardware solutions has been based on the accurate movement of 
the CCD array at a sub-pixel level. For example, the new 
CanoScan scanner D660U by Canon utilizes a Variable 
Refraction Optical System (VAROS) that allows a 600 dpi 
sensor to achieve 1200 dpi resolution by shifting the ‘vision’ of 
the sensor by half a pixel to create a second view of the subject. 
The two views are then interlaced to create a 1200x1200 optical 
image.  Jahn and Reulke (2000) utilised an analogous approach 
in describing a staggered line of arrays in Push-Broom sensors 
onboard aircrafts or satellites. A staggered line array consists of 
two identical CCD lines with one shifted half a pixel with 
respect to the other 
On the other hand, there have been several software approaches 
to the basic problem of high-resolution image recovery using 
multiple frames. Hendicks and Vliet (1999) presented and 
compared a number of systems for significantly improving the 
spatial resolution of an undersampled infrared image sequence 
in which the frames are shifted by random motion of the 
camera. The amount of sub-pixel translation is extracted from 
the frames themselves using different registration techniques. 
Once the magnitudes of the translations are defined, the image 
can be sampled at more points than that provided by the 
detector array. The camera motions (induced vibrations) of the 
above systems cause translations but no significant rotation of 
the acquired images, yielding a constant image shift over the 
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entire image. Hardie et al. (1997) devised a robust but iterative 
algorithm that does not rely on knowing the registration 
parameters a priori.  In this method, the registration parameters 
are iteratively updated along with the high-resolution image in a 
cyclic coordinate descent optimisation procedure. The iterative 
nature of this method is time consuming and would be 
impractical for real-time hardware applications.  Fryer and 
McIntosh (2001) implemented a rigorous geometric algorithm 
based on accurately combining several individual coordinate 
systems, each referenced to the layout of the pixels on the 
sensing array, but also each translated and rotated by previously 
unknown amounts. The magnitude of these translations and 
rotations are accurately determined using a least squares area 
based registration technique. This algorithm involves a number 
of computational difficulties due to the large sparse matrices 
and iterative computations required to define edge areas. 

 

3. A RIGOROUS GEOMETRIC ALGORITHM 
 
In the ensuing sections, the image enhancement approach by 
Fryer and McIntosh (2001) is re-examined and combined with 
harmonic, or Fourier theory so as to form a generalised surface 
model for digital images. The approach is expanded to validate 
its application for improving DEM generation. The various 
steps of this algorithm are given below: 
[1] Collect several left and right low-resolution images of the 
object; [2] Determine pixel offsets of each image from the first 
using least squares area-based image registration; [3] Form a set 
of observation equations by combining harmonic theory with 
the geometry of the enhancement and the grey levels of the 
low-resolution images; [4] Solve the system of observation 
equations and define the higher resolution pixels; [5] Display 
the resultant left and right higher resolution images; [6] Use the 
higher resolution images in a photogrammetric application and 
generate improved DEM. 
 

4.  IMAGE REGISTRATION 
 
For a correct detection of the shifts or offsets, the image must 
contain some features that make it possible to match two 
undersampled images. Very sharp edges and small details are 
most affected by aliasing, so they are not reliable to be used to 
estimate these shifts. Uniform areas are also useless, since they 
are translation invariant. The best features are slow transitions 
between two grey values which are generally unaffected by 
aliasing. Such portions of an image do not need to be detected, 
although their presence is very important for an accurate result. 
The method herein implemented for estimating the global shifts 
between two images relates to an area based matching 
technique. One strategy for area based matching is to adopt a 
least squares solution which can overcome difficulties arising 
from radiometric differences in the images being matched and 
can achieve sub-pixel accuracies of approximately 0.1 pixels. 
The above method computes the shifts between two images at a 
time. However, what is required is the relative position of a 
sequence of images. By calculating the shifts with respect to a 
single reference image, all the relative image positions can be 
obtained. By repeating the procedure for another reference 
image, a second estimate for the relative positions can be 
obtained. The average of all  possible combinations of the sets 
of relative positions (i.e. centred in their first moment) defines a 
better estimate of such shifts or offsets. 
 

5.  GEOMETRIC FACTORS OF THE ENHANCEMENT 
 
To describe the geometry of the enhancement the input images 
are referred to as the “coarse” images, and the higher resolution 
image will be referred to as the “fine” image. The enhancement 

does not create an image which is larger in area than the input 
images. The process creates an image with a larger number of 
smaller pixels over the same scene. Fig. 1 illustrates the 
relationship between the coarse (C) pixel size and the fine (F) 
pixel size. 
To develop the geometric relationships between coarse and fine 
pixels, each pixel in the coarse images must be “mapped” onto 
the fine pixels coordinate system, thus determining which fine 
or unknown pixels are affected by each individual coarse pixel. 
For example in Fig. 1, the coarse pixel C2 covers the area 
bound by (0.5, 2)  (2, 3.5) in the fine pixel coordinate system. 
  

 
Fig. 1 - Coarse data mapped on the enhancement grid 

These coordinates show the upper, lower, left and right bounds 
of the coarse pixel. Using these bounds, the proportion of the 
coarse pixel which affects each fine pixel can be found, such 
that in terms of grey-scale values: 
 

C2 = [F(2,3) + 0.5*F(1,3)+ 0.5*F(2,4)+ 0.25*F(1,4)]*p-2 
 

Where p is the enhancement ratio (p = Fine : Coarse) which  in 
this case is 1.5 as deduced form Fig. 1. In this figure, a 3x6 fine 
pixel array of unknowns would require at least a system of 18 
observation equations for a solution, thus requiring at least three 
2x3 coarse images. To solve for a higher enhancement ratio, 
more coarse images are needed. 
 

6.  IMAGE RECONSTRUCTION AND HARMONICS  
 
Since a given function P(x) is frequently represented by a series 
of discrete points (observations), the resulting Fourier 
polynomial depicts the points and the closeness of fit between 
the points, and therefore, the usefulness and accuracy of Fourier 
series will depend on the actual frequencies present in P(x) and 
those calculable from the discrete points.  However, if any 
interpretation is to be made from Fourier series, some 
assumptions have to be made about the function beyond the 
limits of the data. The simplest assumption and the one used 
here is that P(x) is completely periodic. The standard form for a 
Fourier series of period T is given by: 
 

P(x) = ½ a0+a1cos wx +b1sin wx +a2cos 2wx +b2sin 2wx … 
 

Where w is the angular frequency, w= 2π/T. In our case T, the 
period, represents the number of discrete points x = 1, 2, . . . , n. 
The constants a0, a1, b1, a2, b2, . . . are the Fourier coefficients.  
In this paper the determination of such coefficients is based on 
describing P(x) in terms of a number of discrete points (pixel 
grey values) separated by constant intervals.  For example, the 
five grey levels in the 1-D example below can be expressed as a 
generalized Fourier linear model in which the ‘discrete’ Fourier 
series includes five terms, that is, the number of the required 
fine pixels  
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Let us now consider a situation whereby the coefficients ai and 
bi in  P(x) can be found from the data of the two coarse images 
below. 
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 Fig. 2 – The Koala, coarse vs. regenerated image. 
The grey level value of the coarse pixel C1 can be 
geometrically related to the fine pixels X1 and X2 by the 
expression C1=(X1+1/2X2)*2/3. The same C1 can be also 
related to the Fourier polynomial P(x) in Equation 1 using 
coordinate positions such that C1=[P(1)+½P(2)]*2/3. P(x) is 
evaluated at x=1 and x=2 because these are the coordinates of 
the fine pixels X1 and X2 respectively. Thus, after evaluating 
and rearranging terms, the six equations associated to the six 
coarse pixels are: 

 
 TRUE OFFSETS REGISTRATION 

images x y x y 
A 0.000 0.000 0.000 0.000 
B 0.500 0.500 0.471 0.476 
C 0.250 0.750 0.199 0.800 
D 1.000 0.000 1.022 0.003 
E 0.750 0.750 0.698 0.731 

  
Table 1 – True offsets and vs. computed offsets. 130  0.5a0 - 0.06a1 + 0.83b1– 0.44a2 + 0.07b2 

70 0.5a0 - 0.81a1 - 0.19b1 + 0.31a2 + 0.32b2 
93 0.5a0 + 0.54a1 - 0.63b1 - 0.21a2 - 0.39b2 
80 0.5a0 - 0.44a1 + 0.71b1 - 0.06a2 - 0.44b2 
67 0.5a0 - 0.44a1 - 0.71b1 - 0.06a2 + 0.44b2 

167 0.5a0 + 0.77a1 - 0.32b1+ 0.40a2 - 0.19b2 

 

In a second experiment a picture of the lighthouse (Baxes, 
1994) was repositioned and scanned on five occasions 
producing low-resolution images each of 20x25 pixels. The 
same photograph was rescanned at a higher resolution using an 
enhanced factor of 1.8, thus defining a 36x45 pixels image. The 
resulting enhanced image could then be compared with the 
rescanned. The standard error of the differences between the 
enhanced image and the rescanned image was +/-1.8 grey 
levels. Fig. 3 shows one of the coarse images of the lighthouse 
and the enhanced composite. 

 
The solution of this set of simultaneous linear equations via 
least squares produces the desired coefficients ai and bi of the 
discrete Fourier polynomial P(x), which is then evaluated at the 
fine coordinate points x = 1, 2,. . ., 5 in order to recover, from 
the reconstructed signal, the original Xi grey values. 

 

   

The point of showing the pixels as adjacent is for descriptive 
purpose only. In reality the pixels are discrete, non-contiguous 
values. Other important considerations such as precision 
assessment, radiometric corrections parameters, lens distortions 
and other phenomena which produce differences in real images 
have been excluded from the above example. 
The two dimensional case adheres to the same principles 
described earlier and uses the same geometric relationships 
between coarse and fine pixels as established earlier in this 
section. In this case, the standard Fourier model would be a 
bivariate expansion (i.e., in x and y) representing a surface 
whose order depends on how many rows and columns exist in 
the image. 

 
Fig. 3 - The lighthouse, enhanced image vs. coarse. 

 
To further assess the precision of the enhancement algorithm, a 
series of tests were carried out using low-resolution images of 
the lighthouse test image as those shown in Fig. 3. These tests 
were simulated so that the true image was known prior to the 
enhancement. In this way, both the internal precision and the 
accuracy of the enhancement could be assessed. The tests were 
performed using an enhancement ratio of 1.8 with a varying 
number of images (1-16) to which a range of levels of random 
noise had been added to the grey values of the coarse pixels. It 
should be noted that there exists an amount of inherent noise in 
any digital image and these tests were to simulate that effect. 
There was a clear correspondence between the noise in the 
images and the precision of the results. Upon increasing the 
noise level from +/-1 to +/-5 grey levels the accuracy of the 
enhanced image deteriorated from an RMS=+/-3.3 to and 
RMS=+/-7.9 intensity values. Further, it could be shown that 
the accuracy of the enhanced image was improved as the 
number of coarse images increased. 

 

7.  PRECISION AND ACCURACY TESTS IN 2-D 
 
An example of the effectiveness of this method can be seen in 
Fig. 2. Undersampling a properly sampled target image 68x80 
of the Koala with random sub-pixel offsets, using cubic 
convolution, created a sequence of five synthetic images 38x44. 
The enhancement ratio is 1.8. By application of the algorithm 
using harmonic analysis and using the calculated offsets, the 
original target mage could be regenerated.   
In addition, the performance of the registration algorithm was 
measured by comparing the known shifts with the estimated 
ones. These differences are depicted in Table 1 and show the 
accuracy of the image registration process. 
 

 

 
 



 

images and the enhanced images. A substantial improvement 
using enhanced images over coarse images can be deduced.  

8.  3-D APPLICATIONS OF THE ALGORITHM 
 
An experiment was devised to test the effect of the 
enhancement algorithm on the accuracy of three-dimensional 
surface models  of a test object. The DEM were created by 
taking stereoscopic sets of left and right images, using coarse 
and enhanced images and the result compared. The test object 
shown in Fig. 4 is a spherical surface referred to as the “globe”, 
having an axis of approximately 600 mm, and was used to 
constraint the factors affecting the results from the 
experimentation. At each camera station (positioned at 1.2 
metres from the globe and distanced 0.6 metres from one 
another), images of the globe were acquired with a conventional 
35 mm film camera. The effects of lens distortion were 
minimised by ensuring the area of interest was in the centre of 
the image, where lens distortion is at a minimum. Eight low-
resolution images were obtained by multiple scanning of the 
left and right images at 100 dpi using a conventional flat bed 
scanner. The images were cropped to be 180x180 pixels, and 
the enhancement was processed using a ratio of 1.8 thus 
producing an enhanced composite equal to 324x324. The 
average grey value was determined for each of the eight images 
in the two data sets, and the images in each data set were 
adjusted to have the same mean value. The range of the mean 
value of the eight images was only 1.65 grey values for the left 
data set and 2.4 grey values for the right data set. 

 

 Correlation RMS mm 
Coord. x y z x y z 
Coarse 0.986 0.978 0.969 4.1 3.4 3.2 
Enhan. 0.993 0.991 0.993 2.2 1.9 1.7 

 
Table 2 – Correlation coefficients and RMS of DEM 

 
CONCLUSIONS 

 
The algorithm herein described can be successfully used to 
improve the results attainable from digital photogrammetric 
applications. For many applications, DEMs produced from 
single left and right images in a stereo pair may not be 
sufficiently accurate whereas multiple images from the left and 
right locations could be combined by software to produce 
images with a greater number of pixels. Such development 
opens the possibilities for using either low cost digital still 
cameras or even analog or digital video cam-corders to obtain 
suitable imagery. The scope for the acceptance of digital 
photogrammetry is thereby widened. The notable findings from 
this experimentation include: 
[1] The relationship between the fine pixels in the enhanced 
resolution image and the coarse ones in the original low-
resolution pixels is neither simple nor direct, and therefore 
cannot be solve by simple interpolation methods; [2] The 
amount of noise in the low-resolution images proportionally 
affects the precision of the resultant enhanced image. However, 
the precision of the results can be improved by using more than 
the minimum required number of low-resolution images in 
order to correctly reconstruct the high-resolution image; [3] The 
image registration process can accurately determine the relative 
shifts between two images. However, second estimates of the 
shifts may be determined by changing and repeating the 
procedure using different reference frames; [4] The least 
squares solution of the system of observations for the fine pixel 
determination can define both the external and internal 
precision of the results, which may not be the case with 
conventional interpolation techniques; [5] 3-D measurements 
were improved substantially, from +/-3.2mm to +/-1.7mm when 
using enhanced imagery in the case of the spherical surface 
described in section 8. 

 

 
 

Fig. 4 – The globe 
 

The digital photogrammetric software known as Photomodeler 
Pro 4 by Eos technologies was used to generate the DEM. The 
results for each DEM were analysed to allow for a comparison 
of the accuracy of the DEM generation between the enhanced 
and “true” images. “True” images were produced by scanning 
the original left and right images at an optical resolution of 600 
dpi which is the actual number of picture elements on the CCD 
of the scanner used in this experiment. A DEM of the test 
object were first generated using these sets of high-resolution 
images. 
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