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ABSTRACT: 

An approach for parallel-sequential binocular stereo matching is presented. It is based on discrete dynamical models which can be 
implemented in neural multi-layer networks. It is based on the idea that some features (edges) in the left image exert forces on 
similar features in the right image in order to attract them. Each feature point (i,j) of the right image is described by a coordinate 
x(i,j). The coordinates obey a system of time discrete Newtonian equations of motion, which allow the recursive updating of the 
coordinates until they match the corresponding points in the left image. That model is very flexible. It allows shift, expansion and 
compression of image regions of the right image, and it takes into account occlusion to a certain amount. To obtain good results a 
robust and efficient edge detection filter is necessary. It relies on a non-linear averaging algorithm which also can be implemented 
using discrete dynamical models. Both networks use processing elements (neurons) of different kind, i.e. the processing function is 
not given a priori but derived from the models. This is justified by the fact that in the visual system of mammals (humans) a variety 
of different neurons adapted to specific tasks exist. A few examples show that the problem of edge preserving smoothing can be 
solved with a quality which is sufficient for many applications (various images not shown here have been processed with good 
success). A certain success was also achieved in the main problem of stereo matching but further improvements are necessary. 
 
 

1. INTRODUCTION 

Real-time stereo processing which is necessary in many 
applications needs very fast algorithms and processing 
hardware. The stereo processing capability of the human visual 
system together with the parallel-sequential neural network 
structures of the brain (Hubel, 1995) lead to the conjecture that 
there exist parallel-sequential algorithms which do the job very 
efficiently. Therefore, it seems to be natural to concentrate 
effort to the development of such algorithms. 
In prior attempts to develop parallel-sequential matching 
algorithms (Jahn, 2000a; Jahn, 2000b) some promising results 
have been obtained. But in some image regions serious errors 
occurred which have led to a new attempt to be presented here. 
If one de-aligns both our eyes by pressing one eye with the 
thumb then one has the impression, as if one of the images is 
pulled to the other until matching is achieved.   
This has led to the idea that prominent features (especially edge 
elements) of one image exert forces to corresponding features in 
the other image in order to attract them. A (homogeneous) 
region between such features is shifted together with the region 
bounding features whereas it can be compressed or stretched, 
because corresponding regions may have different extensions. 
Therefore, an adequate model for the matching process seems to 
be a system of Newtonian equations of motion  governing the 
shift of the pixels of one image. Assuming epipolar geometry a 
pixel (i,j) of the left image corresponds to a pixel (i’,j) of the 
right image of the same image row. If a mass point with 
coordinate x(i’,j) and mass m is assigned to that pixel then with 
appropriate forces of various origins acting on that point it can 
be shifted to match the corresponding point (i,j). To match 
points inside homogeneous regions, the idea is to couple 
neighboured points by springs in order to shift these points 
together with the edge points. The model then resembles a little 
bit the old model of Julesz which he proposed in (Julesz, 1971) 
for stereo matching.  

To obtain good results a robust and efficient edge detection 
filter is necessary. The filter used here is based on a non-linear 
edge preserving smoothing algorithm which can be 
implemented with the same type of parallel-sequential 
networks, the so-called discrete dynamical networks (Serra, 
Zanarini, 1990) which can be described (in 2D notation) by 
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Here, zi,j is a state vector defined in each image point (i,j) (z(t) 
denotes the matrix of the zi,j(t)),  K is an external force vector, 
and P is a parameter vector. The initial state zi,j(0) is given by a 
feature vector which is derived from the given image data. 
Then, according to (1), the feature vector is updated recursively 
leading to a final state (hopefully a fix point) at t  → ∞       (or 
approximately at  t = tmax). That final state is the result of the 
image processing task. 
The algorithm (1) is of complexity O(N) (N = N1 ⋅ N2) if the 
number of iterations is limited (= tmax). In each iteration step it 
needs a constant number n of calculations for every image point 
(i,j). Then the total number of operations is N ⋅ n ⋅  tmax. 
Therefore, it is very fast if it is implemented in a multi-layer 
network structure. Here, each neural layer is assigned to a 
discrete time t of (1), and the state of neuron (i,j) in layer t is 
given by zi,j(t). Via the (nonlinear) function fi,j each neuron (i,j) 
of layer t+1 is coupled with neurons (k,l) of layer t. 
In chapter 2 algorithm (1) is specified to edge preserving 
smoothing. Then, chapter 3 is dedicated to stereo matching 
within the same framework.   Some results are shown.  Finally, 
in the conclusions some ideas for future research are presented. 
 



 

 

2. EDGE PRESERVING SMOOTHING 

Edge preserving smoothing is a pre-processing step which is 
often necessary in order to alleviate or even to make possible 
the following steps of stereo processing, object recognition etc.. 
In the past a huge amount of methods for edge preserving 
smoothing have been developed (see e.g. (Klette, Zamperoni, 
1992)) but here a method is presented which fits the discrete 
dynamical network (1). 
That method (Jahn, 1999a) which has a certain relation to the 
anisotropic diffusion approach (Perona, Shiota, Malik, 1994)  is 
more general than edge preserving smoothing but here it is 
applied only to that special problem. We consider M points Pk = 
(xk,yk) (k=1,...,M). These points are the pixel positions (i,j) in 
case of edge preserving smoothing. We now assign to each 
point Pk the points Pl of the Voronoi neighbourhood NV(Pk) 
which is the 4- neighbourhood in case of raster image 
processing. For simplifying, the notation N(k) instead of NV(Pk) 
is used in the following. Furthermore, to each point Pk a feature 
vector fk is assigned (in case of edge preserving smoothing the 
(scalar) features are the grey values gi,j).  
To derive a feature smoothing algorithm the feature vector fk is 
averaged over the neighbourhood N(k): 
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Here, nk is the number of Voronoi neighbours of point Pk (nk = 
4 in case of raster image processing). 
An equivalent (recursively written) notation of (2) is 
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                                                              (t = 0, 1, 2, …) 
 
The initial condition is fk(0) = fk (=gi,j). 
Because of its linearity, the recursive algorithm (3) with 
increasing recursion level (or discrete time) t diminishes the 
resolution of the image and blurs the edges more and more.  But 
here we do not want to blur edges and to smooth out image 
details. Therefore, the feature differences in (3) must be 
weighted properly to prevent that. Introducing weights wk,k’ the 
following scheme is obtained: 
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The weight wk,k’ is chosen as a function of the edge strength 
between features fk and fk’. Averaging of both features is only 
possible if the edge strength is weak. To choose the weights the 
edge strength is introduced according to 
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In (5) ||f|| is the norm of the vector f (||f|| = |f| in case of an 1D 
feature f), and tk,k’ is an (adaptive) threshold.  
Now, the weights can be introduced via 
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where s(x) is a non-increasing function with s(0) = 1 and      
s(∞) = 0. Good results are obtained with the function 
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but other functions are possible too. 
The algorithm (4) is of type (1) and thus represents a special 
discrete dynamical network. We learn from (4) that in contrast 
to commonly used neural networks not the signals fk are 
weighted and summed but their differences fk - fk’ of 
neighboured neurons. Furthermore, the non-linearity, here given 
by the function s(x) (7), differs from the sigmoid function. 
Figures 1 to 3 show the capabilities of the algorithm. 
In algorithm (4) the averaging was confined to the (small) 4-
neighbourhood. Therefore, many iterations (typically 20 – 30) 
are  necessary to obtain sufficient smoothing. To reduce the 
number of iterations bigger neighbourhoods can be considered 
(Jahn, 1999b). 
 

Fig. 1.  left: simulated image with additive noise 
                    (S/N = 1 and S/N = 4, resp.) 

center: smoothed image 
            right: edges in smoothed image 

 

        
    Fig. 2.  Pentagon image              edge image 
 

        
    Fig. 3.  smoothed image             edge image 
 
 
 
 
 



 

 

3.  STEREO MATCHING 

Stereo matching (Klette et al., 1998) is an important problem 
with a broad range of applications. Considerable efforts have 
been made to enhance the matching quality and to reduce the 
processing time. Fast algorithms  (Gimel'farb, 1999) and also a 
few approaches to parallel and neural algorithms, e.g. 
(Goulermas, Liatsis, 2000), (Pajares, de la Cruz, 2001), exist for 
the case of epipolar geometry but these geometry often is 
fulfilled only approximately. Therefore, methods are needed 
which can be generalized to the non-epipolar case and which 
have real-time processing capability. Here an attempt is made to 
develop such a method basing on the discrete dynamical 
networks (1). To start that research again epipolar geometry is 
used but it is obvious how the algorithm can be generalized to 
the non-epipolar case.  
We consider a left image gL(i,j) and a right image gR(i,j) (i,j = 
0,…,N-1). Corresponding points (i,j) of  gL and (i’,j) of  gR on 
epipolar lines j are connected by   i’= i+s where s(i’,j) is the 
disparity. Here, s(i’,j) is assigned to the coordinates of the right 
image, but it is also possible to assign it to the left image or to a 
centered (cyclopean) image. In corresponding points the 
following equation approximately holds: 
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In most images there are points which are absent in the other 
image (occluded points). Those points (for which (1) of course 
does not hold) must be considered carefully in order to avoid 
mismatch.  
Now, to each pixel (i’,j) of the right image a coordinate x(i’,j), a 
velocity v(i’,j),  and a mass m are assigned in order to describe 
the motion of such a point. Let (ie,j) be an edge point of the left 
image and (ie’,j) an  edge point of the right image, respectively. 
Then, the edge point in the left image exerts a force K(ie, ie’,j) 
on the edge point in the right image in order to attract that 
point. We consider that force as an external force. Furthermore, 
on mass point (i’,j) there can be acting internal forces such as 
the spring type forces Kspring(i’-1, i’,j), Kspring(i’+1, i’,j) and a 
force -γv(i’,j) describing the friction with the background. Other 
internal forces such as friction between neighboring image rows 
j, j±1 can also be included. More general, the forces, here 
denoted as K(i’,j, j±k), can also depend on edges and grey 
values in other image rows j±k of both images which means a 
coupling of different image rows. 
With those forces Newton’s equations are: 
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Introducing the velocities xv �= , the system of differential 
equations (9) of second order can be converted into a system of 
first order equations 
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differential equations turns into a system of difference equations 
or discrete time state equations: 
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(11) 
That system which is of type (1) allows to calculate the system 
state zt recursively. The initial conditions are: 
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When that recursive system of equations has reached its final 
state ( )jixt ,'

max
, then the disparity can be calculated 

according to  
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which is the final shift of ( )jixt ,' from its initial position 

( ) ','0 ijix = . 
The recursive calculation of the disparity according to (11) 
allows the incorporation of some countermeasures against 
ambiguities. In particular, the so-called ordering constraint 
(Klette et al., 1998) can be included: Let  
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be the increment of ( )jixt ,' . Then, the initial order 

( ) ( )jixjix tt ,',1' >+  of the pixels of the right image can be 

guaranteed if the following limitation of ( )jixt ,'∆  is used: 
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Here, d+ = xt(i'+1,j) - xt(i',j), d_ = xt(i',j) - xt(i'-1,j). 
Conditions such as (15) can be checked easily in each 
step of recursion. 
We come now to the calculation of the forces K. First, it must 
be acknowledged that essential stereo information is only 
present in image regions with significant changes of grey level, 
and especially near edges. Furthermore, in the epipolar 
geometry assumed here only the x – dependence of the grey 
values, i. e. ∇ xg(i,j) = g(i,j) - g(i-1,j) is essential. Let’s assume 
that there is a step edge between (i,j) and   (i-1,j) with |∇ xg(i,j)| 
> threshold. That means that (i,j) belongs to an image segment 
and (i-1,j) to another one. When e. g. such an edge is at the 
border of a roof of a building then often left or right of that edge 
we have occlusion. Then, if the pixel (i,j) has a corresponding 
pixel in the other stereo image this may be not the case for pixel 
(i-1,j) or vice versa. Therefore, both pixels (i.e. pixels left hand 
and right hand of an edge) must be considered separately. They 
can have different disparities or even worse: in one of them 



 

 

cannot be calculated a disparity at all. To such pixels only with 
prior information or by some kind of interpolation a (often 
inaccurate) disparity can be assigned. With respect to our 
attracting forces that means the following: If there is an edge in 
the left image between (i-1,j) and (i,j) and another one between 
(i’-1,j) and (i’,j) in the right image then there is a force KR(i,i’,j) 
originating from (i,j) and attracting (i’,j) and another force KL(i-
1,i’-1,j) acting from (i-1,j) to (i’-1,j). This is necessary for 
coping with occlusion.  
Let’s consider the external force KR(i,i’,j). Then, first, that force 
depends on the difference |gL(i,j)-gR(i’,j)| or, more general, on a 
certain mean value of that difference. That mean value should 
be calculated only over pixels which are in the same image 
regions as pixels (i,j) (in left image) and (i’,j) (in right image) in 
order to exclude problems with occlusion. To guarantee this, the 
averaging is performed only over image points (ik,jk) with 
|gL(i,j)-gL(ik,jk)| ≤ threshold and (i’l,jl) with |gR(i’,j)-gR(i’l,jl)| ≤ 
threshold, respectively. We denote that mean value as  
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Secondly, pure radiometric criteria are not sufficient. Therefore, 
geometric deviations are taken into account too. To do that,  we 
consider two region border lines (one in the left image and the 
other in the right image) which contain the points (i,j) and (i’,j), 
respectively. The situation is shown in figure 4. 
 
   

Fig. 4.  Borderlines in left image, in right image, and overlaid 
 
We see that both borderlines are different and do not match. A 
useful quantity for measuring that mismatch is the sum of the 
border point distances along the horizontal lines drawn in figure 
4. Be (ik,j+k) a point on the left borderline and (i’k,j+k) a point 
on the right borderline, respectively. For k = 0 the points are 
identical with the points (i,j) and (i’,j). Be do = |i - i’|. Then, a 
useful border point distance is 
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The distance dw accomplishes a certain coupling between 
epipolar image rows which are no longer independent. This 
sometimes can reduce mismatches efficiently. 
With ∆g and dw the total distance is 
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The smaller that distance between edge points (i,j) and (i’,j) is, 
the bigger is the force KR(i,i’,j). Therefore,  
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seems to be a good measure for the force KR. The calculation of 
KL is fulfilled analogously.  
Now, the (external) force Kext(i’,j) acting on point  (i’,j) can be 
computed as the maximum of all forces KR(i,i’,j) with different i 
or as a weighted sum of these forces. Here, we take into account 
only points (i,j) with | i - i’| ≤ Max_disparity. The maximum 
disparity used here is often known a priori. The introduction of  
Max_disparity is not necessary. One can also use distance 
depending weighting and calculate the resulting force as  
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with f(| i –xt(i’,j)|) being a certain weighting function which 
decreases with increasing distance  | i - xt(i’,j)|. Here, we use the 
special function 
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Up to now we have considered only forces which act only on 
image points (i’,j) near edges. But we must assign a disparity to 
each point of the right image. Therefore, the disparity 
information from the edges must be transfered into the image 
regions. Within the model presented here, it is useful to do this 
by means of adequate forces, which connect the edge points 
with interior points (i.e. points inside regions). Local forces of 
spring type have been studied for that purpose. Let xt(i’,j) and 
xt(i’+1,j) be two neighboured mass points which we assume to 
be connected by a spring. Then, point xt(i’+1,j) exerts the 
following (attracting or repulsive) force on point xt(i’,j): 
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(22) 
The same force, but with the opposite sign, acts from xt(i’,j) on 
xt(i’+1,j) according to Newton’s law of action and reaction.  
Experiments with those and other local forces (e.g. internal 
friction) have not been fully satisfying up to now. Of course, the 
stereo information is transferred from the edges into the regions, 
but very slowly. One needs too many recursions until 
convergence. Therefore, one result of these investigations is that 
local forces are not sufficient. We need far-field interaction 
between points xt(i’,j) and xt(i’+k,j) which can easily be 
introduced into our equations of motion. First experiments with 
such forces have given some promising results but that must be 
studied more detailed in future.  
The algorithm is applied here to the standard Pentagon stereo 
pair because that image pair is a big challenge because of the 
many similar structures and the many occlusions. Figure 5 
shows a section of the smoothed image pair (see figure 3 for the 
whole left-hand image). 
 



 

 

        
Fig. 5. Binocular image pair 

 
Several computer experiments have been carried out in order to 
choose proper parameters of the algorithm. It turned out that the 
number w in (17) should have a size between 5 and 10 (but of 
course, that value depends on the structure of the image) 
whereas the best values of parameters α1  and α2  of equation 
(18) seem to be in the vicinity of α1  = α2  = 1. But these 
investigations are only preliminary. It is also not clear which the 
best law of the external forces (19) – (21) is. 
Red-green overlays of left images (red) and right edge images 
(green) showing the inherent disparities and the quality of edge 
matching, respectively, are presented in figures 6 and 7. Finally, 
figure 8 shows the disparity image. The result shows that in 
most image points good matching was achieved. But it shows 
also that there are left some mismatches resulting in wrong 
disparities.  
   
 
 
 
 
 
 
                                                      
 

 
 
                                                              

 
 
 
 
 
 
 
 
 
 

Fig. 6.  Overlay of left images and right edge images  
(original image pair) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.  Overlay of left images and right edge images  
(image pair after 20 iterations) 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
       
 
 
 
 

 

Fig. 8. Disparity map 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

4.  CONCLUSIONS 

The results show that the introduced parallel-sequential model 
based on Newton’s equations of motion and attracting forces 
between edges may be a promising approach to real-time stereo 
processing. The algorithm gives the right disparities in most 
image points but there remain errors. Therefore, new efforts are 
necessary to enhance the quality of the approach. Some ideas 
for improvement are the following: First, far - field forces 
should be introduced. Secondly, the assumed force law (16) – 
(21) must be optimized or changed. When the right position 
xtmax(i’,j) is reached then the external forces should reduce to 
zero in order to avoid oscillations which are small but not zero 
now.  
Finally, it must be mentioned that the model can be extended to 
the non-epipolar case introducing coordinates y(i’,j) and forces 
acting in y – direction. 
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