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ABSTRACT

Factorization algorithms for recovering structure and motion from an image stream have many advantages, but tradition-
ally requires a set of well tracked feature points. This limits the usability since, correctly tracked feature points are not
available in general. There is thus a need to make factorization algorithms deal successfully with incorrectly tracked
feature points.
We propose a new computationally efficient algorithm for applying an arbitrary error function in the factorization scheme,
and thereby enable the use of robust statistical techniques and arbitrary noise models for individual feature points. These
techniques and models effectively deal with feature point noise as well as feature mismatch and missing features. Fur-
thermore, the algorithm includes a new method for Euclidean reconstruction that experimentally shows a significant
improvement in convergence of the factorization algorithms.
The proposed algorithm has been implemented in the Christy–Horaud factorization scheme and the results clearly illus-
trate a considerable increase in error tolerance.

1 INTRODUCTION

Structure and motion estimation of a rigid body from an
image sequence, is one of the most widely studied fields
within the field of computer vision. A popular set of so-
lutions to the subproblem of estimating the structure and
motion from tracked features are the so–called factoriza-
tion algorithms. They were originally proposed by [Tomasi
and Kanade, 1992], and have been developed consider-
ably since their introduction, see e.g. [Christy and Horaud,
1996, Costeira and Kanade, 1998, Irani and Anandan, 2000,
Kanade and Morita, 1994, Morris and Kanade, 1998, Poel-
man and Kanade, 1997, Quan and Kanade, 1996, Sturm
and Triggs, 1996].

These factorization algorithms work by linearizing the ob-
servation model, and give good results fast and without any
initial guess for the solution. Hence the factorization algo-
rithms are good candidates for solving the structure and
motion problem, either as a full solution or as initializa-
tion to other algorithms such as bundle adjustment, see e.g.
[Slama, 1984, Triggs et al., 2000].

The factorization algorithms assume that the correspon-
dence or feature tracking problem has been solved. The
correspondence problem is, however, one of the difficult
fundamental problems within computer vision. No perfect
and fully general solution has been presented. For most
practical purposes one most abide with erroneous tracked
features as input to the factorization algorithm. This fact
poses a considerable challenge to factorization algorithms,
since they implicitly assume independent identical distributed
Gaussian noise on the 2D features (the 2–norm is used as
error function on the 2D features). This noise assumption
based on the 2–norm is known to perform rather poorly in
the presence of erroneous data. One such badly tracked
feature can corupt the result considerably.

A popular way of addressing the sensitivity of the 2–norm
to outliers is by introducing weights on the data, such that

less reliable data is down–weighted. This is commonly
referred to as weighted least squares. We here propose
a method for doing this in the factorization framework.
Hereby the sensitivity to outliers or erroneous data is re-
duced. In other words we allow for an arbitrary Gaussian
noise model on the 2D features, facilitating correlation be-
tween the 2D features, directional noise on the individual
2D features in each frame and an arbitrary variance. In this
paper we focus on different sizes of the variance on the in-
dividual 2D features, in that this in itself can address most
of the issues of concern.

In order to down–weight less reliable data these have to
be identified. A popular way to do this is by assuming
that data with residual over a given threshold are less re-
liable. This assumption is the basis of most robust statis-
tics, and is typically implemented via Iterative Reweighted
Least Squares (IRLS). IRLS allows for arbitrary weighting
functions. We demonstrate this by implementing the Hu-
ber M-estimator [Huber, 1981] and the truncated quadratic
[Black and Rangarajan, 1996].

The proposed approach applies robust statistical methods
in conjunction with a factorization algorithm to obtain bet-
ter result with erroneous data.

There has been other attempts to address the problem of
different noise structures in the factorization framework
[Irani and Anandan, 2000, Morris and Kanade, 1998]. Irani
and Anandan [Irani and Anandan, 2000] assumes that the
noise is separable in a 3D feature point contribution and a
frame contribution. In other words if a 3D feature point
has a relatively high uncertainty in one frame it is assumed
that it has a similar high uncertainty in all other frames.
However, large differences in the variance of the individual
2D feature points is critical to the implementation of robust
statistical techniques that can deal with feature point noise,
missing features, and feature mismatch in single frames.
As an example, a mismatched feature in one frame does
in general not mean that the same feature mismatch occurs



in other frames. For missing features, the noise model of
[Irani and Anandan, 2000] is inadequate, as will be seen
later. [Morris and Kanade, 1998] proposes a bilinear min-
imization method as an improvement on top of a standard
factorization. The bilinear minimization incorporates di-
rectional uncertainty models in the solution. However, the
method does not implement robust statistical techniques.
It is noted, that [Jacobs, 2001] have proposed a heuristic
method for dealing with missing data.

We have chosen to implement the proposed method in con-
junction with the factorization algorithm by Christy and
Horaud [Christy and Horaud, 1996]. This factorization
assumes perspective cameras as opposed to linearized ap-
proximations hereof. This yields very satisfactory results,
as illustrated in Section 5. In order to solve a practical
problem we propose a new method for Euclidean recon-
struction in Section 4, as opposed to the one in [Poelman
and Kanade, 1997].

2 FACTORIZATION OVERVIEW

This is a short overview of factorization algorithm. For a
more detailed introduction the reader is referred to [Christy
and Horaud, 1994, Christy and Horaud, 1996]. The factor-
ization methods cited all utilize some linearization of the
pinhole camera with known intrinsic parameters:����	��
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are the three rows vectors of the rotation matrix. The used/
approximated observation model can thus be written as:! � 
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where
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is the 57698 ’linearized motion’ matrix associated

with frame ( .
When : features have been tracked in ; frames, (=<?> %7@�@	@ ;BA
and CD<E> %7@�@	@ :*A , the observations from (2) can be com-
bined to: F �HGJI
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The solution to this linearized problem is then found as the
G

and

I
that minimize:[ � FL\ G]I

(4)
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Figure 1: Overview of the Christy–Horaud algorithm.

where

[
is the residual between model,

GJI
, and the data,F

. The residuals,

[
, are usually minimized in the Frobe-

nius norm. This is equivalent to minimizing the squared
Euclidean norm of the reprojection error, i.e. the error be-
tween the measured 2D features and the corresponding re-
projected 3D feature. Thus (4) becomes:^K_a`bdc egfaf F�\ GJI faf hi � ^K_j`bdc e Rk�,l N7fjf m � \ G # � faf hh (5)

where m � and

# �
denote the CBnpo column of

F
and

I
, re-

spectively. In this case the solution to

G
and

I
can be

found via the singular value decomposition, SVD, of
F

.

It is noted, that for any invertible 8K6L8 matrix, q :GJIr�HG qsqut N Ir�wvGVvI
(6)

Hence the solution is only defined up to an affine transfor-
mation. In [Christy and Horaud, 1996], a Euclidean recon-
struction is achieved by estimation of an q , such that the
rotation matrices, > 0 
 1 
 2 
 A � , are as orthonormal as possi-
ble. Further details are given in Section 4.

2.1 Christy–Horaud Factorization

The approach we improve on by introducing arbitrary noise
models is the approach of Christy and Horaud [Christy and
Horaud, 1996]. This approach iteratively achieves a solu-
tion to the original non-linearized version of the pinhole
camera. These iterations consist of modifying the observa-
tions

��
��+,�-
��
, and hence

F
, as if they where observed by

an imaginary linearized camera, which in turn requires an
estimate of the structure and motion, see Figure 1. The
update formulae is given by:! v�T
��v�-
� & �yxz! �T
���-
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where ) v��
��+ v�-
���. is the updated data and ) �O{,|}�+,��{W|Z}�. is the
object frame origin.

3 SEPARATION WITH WEIGHTS

In order to deal with erroneous data, (5) should be com-
puted with weights:^K_j`bdc e Rk�,l N�faf � � ) m � \ G # �/. faf hh (8)



where � � is an 5-;L6u5�; weighting matrix representing the
weights of the CBnpo column of

F
. In the case of Gaussian

noise � �� � � is the covariance structure of m � and (8) is
equivalent to minimizing the Mahalanobis distance.

3.1 Separation with Weights

The solution to (8) is

G
and

I
given

F
and � � . Note

that a SVD can not be applied as for (5). To solve (8), a
method similar to the idea in the Christy-Horaud factor-
ization algorithm [Christy and Horaud, 1996] is proposed.
This method is generally known as surrogate modeling, see
e.g. [Booker et al., 1999]. Surrogate modeling works by
applying a computationally ’simpler’ model to iteratively
approximate the original ’hard’ problem.

The best known example of surrogate modeling is probably
the Newton optimization method. Here a 5 R-� order poly-
nomial is approximated to the objective function in each
iteration and a temporary optimum is achieved. This tem-
porary optimum is then used to make a new 5 R-� order ap-
proximation, and thus a new temporary optimum. This is
continued until convergence is achieved.

Here (5) is used to iteratively approximate (8) getting a
temporary optimum, which in turn can be used to make a
new approximation. The approximation is performed by
modifying the original data,

F
, such that the solution to

(5) with the modified data,

vF
, is the same as (8) with the

original data. By letting

v
denoting modified data, the goal
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the normal equations once
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iteration number, then the algorithm goes as follows:
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Modify Data

Figure 2: A geometric illustration of how the data is mod-
ified in steps 3. and 4. of the proposed algorithm for sepa-
ration with weights.

4. Modify Data� CK� v[ �� � � � [ ��vF � � G � I �7  v[ �
5. If Not Stop � � �   % , goto 2. The stop criteria isfjf [ � \ [ � t N faf ¡£¢ ��¤�¥§¦/¨ 0B:�2 ¦

As illustrated in Figure 2 the data,
F �

, is modified such
that the Frobenius norm of the modified residuals,

v[ ��
, are

equal to norm of the original residuals,

[ ��
, in the norm

induced by the weights, � � . The last part of step 2. ensures
that the residual,

[ �
, is orthogonal to

G
in the induced

norm, since

GE��I ��
is the projection of

F �
onto

G]�
in the

induced norm.

The reason this approach is used, and not a quasi–Newton
method,e.g. BFGS [Fletcher, 1987] on (8), is that faster
and more reliable results are obtained. In part because that
with ’standard’ optimization methods the problem is very
likely to become ill-conditioned due to the potentially large
differences in weights.

To illustrate this, some test runs were made, comparing the
computation time needed to solve some ’typical’ problems,
see Table 1. The

F
matrix was formed by (3) where to

noise was added from a compound Gaussian distribution.
The compound distribution was formed by two Gaussian
distributions, one with a standard deviation 10 times larger
than the other. The frequency of the larger varying Gaus-
sian is the Noise Ratio. It is seen, that the proposed method
performs better than BFGS, and that the BFGS approach
did not converge for

F �H©�ª 6 ©�ª and Noise Ratio=0.5.

3.2 Arbitrary Error Functions

When dealing with erroneous data, robust statistical norms
or error functions become interesting, see e.g. [Black and



F
Noise This BFGS Flop;L6L: Ratio Method Ratio

20x40 0.02 1.20e+07 2.32e+08 19.33
-”- 0.10 1.58e+07 5.81e+08 36.73
-”- 0.50 5.50e+07 4.22e+08 7.67

40x40 0.02 7.20e+07 1.99e+09 27.58
-”- 0.10 1.15e+08 3.64e+09 31.73
-”- 0.50 3.59e+08 – –

80x40 0.02 5.17e+08 1.78e+10 34.41
-”- 0.10 8.00e+08 7.08e+10 88.52
-”- 0.50 2.30e+09 8.74e+10 37.93

Table 1: Computational time comparison of the proposed
algorithm with MatLab’s BFGS (fminu()), – denotes that
the optimization did not converge due to ill-conditioning.

Calculate New Weights

If Not
Stop

Weights

Christy−Horaud with

Figure 3: Overview of the proposed approach for arbitrary
error functions.

Rangarajan, 1996]. This is achieved in the presented setup
via Iterative Reweighted Least Squares (IRLS). Where IRLS
works by iteratively solving the ’weighted’ least squares
problem and then adjusting the weights, such that it cor-
responds to the preferred error function, see Figure 3. A
typical robust error function is the truncated quadratic:« 
�� �¬ % faf � 
�� faf ® |} ¢ ;¯ S�°± °|Z} faf � 
�� faf ® |}³² ; (10)

where
� 
�

is the residual on datum (´C , « 
�� is the corre-
sponding weight and ; is a user defined constant relating
to the image noise. If an a priori Gaussian noise struc-
ture, µ 
�� , is known for the 2D features, the size of the
residuals

� 
�
is evaluated in the induced Mahalanobis dis-

tance, otherwise the 2-norm is used. In the case of a priori
known Gaussian noise, µ � , it is combined with the trun-
cated quadratic by � �� � � � « � µ t N� « � , otherwise � �� � � �« � « � .
4 EUCLIDEAN RECONSTRUCTION

The objective of Euclidean reconstruction is to estimate theq in (6), such that the 0 
 , 1 
 and 2 
 of (1) are as orthonor-
mal as possible. In the paraperspective case [Poelman and
Kanade, 1997], which is the linearization used in Christy
and Horaud [Christy and Horaud, 1996], the
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Figure 4: A sample frame from the
Eremitage sequence.

Figure 5: A sample frame from the Court
sequence. The test set was generated by
hand tracking 20 features in this sequence
of 8 images.

where ) �*{,
W+,��{,
§. is the projection of the object frame origin
in frame ( .
Since the paraperspective approximation is obtained by lin-
earizing

Nnp¸| 2 �
 P # � the orthonormal constraints are restricted

to 0 
 and 1 
 .With ¹ � qºq � these constraints can be
formulated as [Christy and Horaud, 1996, Poelman and
Kanade, 1997]:� (»0 �
 ¹g0 
 � 1 �
 ¹¼1 
¾½� ( ¶ �
 ¹ ¶ 
%   � h {,
 \ · �
 ¹ · 
%   � h{,
 �¿ª� (»0 �
 ¹¼1 
 �4ª ½� ( ¶ �
 ¹ · 
 \ �T{,
p�B{W
 ) ¶ �
 ¹ ¶ 
À.5Á) %   � h {,
 . \ �T{,
§��{W
 ) · �
 ¹ · 
À.5�) %   � h{,
 . �Hª
With noise, this cannot be achieved for all ( and a least
squares solution is sought. In order to avoid the trivial null-
solution the constraint 0 � N ¹g0 N � 1 � N ¹s1 N � %

is added
[Christy and Horaud, 1996, Poelman and Kanade, 1997]
and the problem is linear in the elements of ¹ .

This approach has the disadvantage, that if ¹ has nega-
tive eigenvalues, it is not possible to reconstruct q . This
problem indicates that an unmodeled distortion has over-
whelmed the third singular value of

F
[Poelman and Kanade,

1997]. This is a fundamental problem when the factoriza-
tion method is used on erroneous data.



Figure 6: Section of the Eremitage se-
quence showing the tracked features.

Figure 7: Section of the Eremitage se-
quence showing the tracked features. It
is the frame following the frame shown in
Figure 6. Note the change in feature loca-
tions.

To solve this problem we propose to parameterize, ¹ as:¹�)§Â +�Ã�. �4Ä )§Â . ��,Ã h N ª¿ªª Ã hh ªªHª Ã hÅ
��sÄ )§Â . � (11)

where

Ä )pÂ . is a rotation matrix with the three Euler angles
denoted by Â . The term 0 � N ¹g0 N � 1 � N ¹¼1 N � % is replaced
by Æ ¦/� )pq . � %

, such that the over all scale of q is much
more robust and less sensitive to the noise in a particular
frame.

Hence the estimation of ¹ is a nonlinear optimization prob-
lem in six variables, with a guaranteed symmetric positive
definite ¹ . Our experience shows that this approach to the
problem is well behaved with a quasi–Newton optimiza-
tion method.

5 EXPERIMENTAL RESULTS

We illustrate the capabilities of the proposed algorithm via
three sets of experiments. The first demonstrate the capa-
bility of using different error functions. This is followed by
a more systematic test of the tolerance for different kinds
of possible errors. Finally we show an example of why
the proposed method for Eucledian reconstruction is to be
preferred.

5.1 Different Error Functions

To demonstrate the capability of using different error func-
tions, we used an image sequence of the Eremitage castle,
see Figure 4. The 2D features were extracted via the Har-
ris corner–detector [Harris and Stephens, 1988], where-
upon the epipolar geometry was used for regularization via
RANSAC/MLESAC [Torr, 2000] followed by a non–linear
optimization [Hartley and Zisserman, 2000].

Figure 8: Section of the Eremitage sequence showing the
tracked features and residuals from the roof using the trun-
cated quadratic with the proposed method. The residuals
are denoted by the dark lines.

This enforcement of the epipolar geometry enhanced the
quality of the data, but it did not yield perfectly tracked
data. There are two main reasons for this.

First, the trees around the castle yield a myriad of pottential
matches since the branches look pretty much alike. The
restriction of correspondances to the epipolar line is not
sufficient to amend the situation as is shown in Figures 6
and 7.

Second, when filming a castle, one moves approximately
in a plane – both feet on the ground. This plane is paral-
lel to many of the repeating structures in the image, e.g.
windows are usually located at the same horizontal level.
Hence the epipolar lines are approximately located ’along’
these repeating structures and errors here cannot be cor-
rected by enforcing the epipolar geometry. In general the
sequence containes plenty of missing features, mismatched
featuress and noise.

The truncated quadratic [Black and Rangarajan, 1996], the
Hubers M–estimator [Huber, 1981] and the 2–norm were
tested as error functions. The reason the proposed method
was used with the 2–norm and not the original Christy–
Horaud method is, that there were missing features in the
data–set. These missing features are incompatible with the
Christy–Horaud approach, but the approach presented here
deal with them by modeling them as located in the middle
of the image with a weight

% ªBÇ
times smaller than the ’nor-

mal’ data. It is noted that this approach for dealing with
missing features can not be expressed in the framework of
[Irani and Anandan, 2000].

In order to evaluate the performance the residuals between
the 2D features and the corresponding reprojected 3D fea-
tures were calculated. The desired effect is that the resid-
uals of the ’good’ 2D features should be small, hereby in-
dicating that they were not ’disturbed’ by the erroneous



Figure 9: Same section as in Figure 8, but this time with
the 2–norm instead of the truncated quadratic.

data. An example of the advantage obtained by the trun-
cated quadratic is illustrated in Figures 8 and 9. In order to
further investigate the capability and effect of using differ-
ent error functions we compared the È ªBÉ percent smallest
residuals of the three used error functions, see Table 2. The
underling assumption is that no more then 5 ªBÉ of the data
is erroneous. It is seen, that via this assumption there is
a considerable improvement in choosing other error func-
tions then the 2–norm.

Error Function:
NR�Ê 
 f Ë ¦ � f 


2–Norm 5.39 pixels
Hubers M-estimator 4.12 pixels
Truncated Quadratic 2.34 pixels

Table 2: Comparison of the 80% smallest residuals

5.2 Error Tolerance

To provide a rigorus experimental validation of the pro-
posed method, a set of experiments were made by taking
a ’good’ data set and gradually degrading it with large er-
rors at random. The used data set was the Court sequence,
see Figure 5. Twenty features were traced by hand through
the eight frames. The proposed algorithm with the trun-
cated quadratic was compared to the method of Christy–
Horaud, hereby accessing the improvements achieved. Ex-
periments were performed with three types of errors, namely
large Gaussian noise, missing features and swapping fea-
tures.

In the first experiment an increasing number of the 2D fea-
tures were corupted by large gaussian noise. As a quality
measure the mean error between the original non–corrupted
data and the reprojected 3D structure was calculated, see
Figure 10. In some cases the algorithm did not converge or
in the Christy–Horaud case the Euclidean reconstruction
faulted. This is illustrated in the Figures by not drawing a
bar. It is seen that the effect of this coruption is consider-
ably diminished with the truncated quadratic compared to
the original method.

Figure 10: Percentage of 2D features cor-
rupted by Gaussian noise with variance of
400 pixels, and the corresponding mean er-
ror of the reconstruction.

Figure 11: Percentage of 2D features re-
moved, and the corresponding mean error
of the reconstruction.

In the next experiemt an increasing number of 2D features
were removed, see Figure 11. It is seen that the proposed
approach converges and that the effect on the reconstruc-
tion is negligible. It impossible to deal with missing data
in the original method.

In the last experiemnt an increasing number of 2D features
were swaped within a given frame, Figure 12. The swap-
ping of features is a good emulation of mismatched fea-
tures. Again a considerable improvement is observed.

It is seen that the proposed approach, used to implement
the truncated quadratic as an error function, yields consid-
erably better results. It is also noted that the higher degree
of convergence in the proposed approach is due to the pro-
posed approach to Eucledian reconstruction.

5.3 Eucledian Reconstruction

To further illustrate the benefits of the proposed method
for Eucledian reconstruction a simulated data set was con-
structed. Here features were swaped by the same scheme
as in Figure 12, and the number of non–converging runs
were counted in bins of 5, see Figure 13. The result clearly
demonstartes the advantages of the proposed method.



Figure 12: Percentage of 2D features swapped to emu-
lated errors in the correspondence algorithm, and the cor-
responding mean error of the reconstruction.

Figure 13: The number of non–converging runs with in-
creasing number of errors, with and without the proposed
method for Eucledian reconstuction. The runs are pooled
in bins of 5.

6 DISCUSSION

Factorization algorithms represent an important set of tools
for recovering structure and motion from an image stream.
They can be used as a full solution to the problem or as the
very important initialization step in non-linear minimiza-
tion methods [Slama, 1984, Triggs et al., 2000].

We have presented a computationally efficient algorithm
for applying arbitrary error functions in the factorization
scheme for structure and motion. It has also been demon-
started on real typical data and via rigorous tests, that this
scheme deals well with erroneous data.

It is noted, that the particular choice of error function is up
to the fancy of the user. For a further survey of the benefits
of different error functions the reader is referred to [Black
and Rangarajan, 1996].
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