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ABSTRACT:

FIFEDOM (Frequent-Image-Frames Enhanced Digital Ortho-rectified Mapping) is an ongoing, multidisciplinary research project
aiming to provide low-cost, information-rich digital mapping through the development of an intelligent digital airborne image
acquisition strategy, and novel image processing techniques. In particular, FIFEDOM is designed to exploit the high degree of
overlapping in digital aerial imagery to generate accurate map products. FIFEDOM utilizes high-overlap digital image acquisition to
provide multiple-look-angle reflectance for each pixel in a scene. The FIFEDOM project concentrates on four technology areas:
Image Acquisition System and Sensor Calibration; Radiometric Balancing; Digital Surface Model (DSM) generation; and Bi-
directional Reflectance Distribution Function (BRDF) model extraction.
This paper emphasizes the FIFEDOM DSM module. It introduces an innovative, breakthrough methodology for automated DSM
generation. This is achieved through utilization of multi-view, multi-frame highly-overlapped digital images. This capability
significantly improves the result significantly by generating a very dense, high-quality, reliable Digital Surface Model.

1. INTRODUCTION

Since the 1970s, an increasing amount of research work has
been reported aiming to replace the manual time consuming
image mensuration process with a semi/fully automated
operation (Helava 1976, Förstner 1982, Ackermann 1984). This
investigation leads to a series of more complex and successful
commercially available systems, for e.g. automatic Digital
Elevation Model (DEM) generation or Automatic Aerial
Triangulation (AAT). In spite of a high degree of automation in
those systems, a significant amount of work is still required for
post-processing and editing of extracted e.g. elevation data
especially in problematic areas such as forest or built-up areas.
This is due to a number of reasons such as occlusion, height
discontinuities, repetitive patterns, shadows, and lack of texture,
to name a few.

The proposed work is an attempt to overcome some of these
issues especially in built-up areas where the user community
would like more frequent updates if the cost could be contained.
The importance of this project to the geomatic industry is based
on the reality that digital airborne cameras are now practical for
mapping. Modern CCD performance and cost characteristics
make this a cost-effective approach, and multiple digital image
pairs are not expensive compared to traditional aerial
photography.

The paper introduces an innovative methodology for automated
DSM generation. This is achieved through utilization of multi-
view, multi-frame highly overlapped digital images. Existing
tools are based on stereo image matching techniques, where
only two overlapping images are processed. This leads to
unsatisfactory results (e.g. in built-up areas, where occlusion is
a major issue). The method proposed by FIFEDOM overcomes

this problem, if not completely, then at least partially, by
applying novel multiple image matching techniques. In this
manner, if an area/point is occluded in one image, it is still
likely to be seen in other overlapping images, captured from
different view angles, and it is possible to reconstruct a 3D
representation of the occluded terrain surface. This capability
improves the result significantly by generating a very dense,
high-quality, reliable Digital Surface Model (DSM). The
resulting DSM is subsequently (beyond the scope of this paper)
used to create Digital Elevation Models (DEMs) and other
related image products (e.g., true ortho-rectified images).

.
2. OVERVIEW

The FIFEDOM project employs digital RGB imagery from the
Nikon D1 camera, 12 bits per band. The camera has been
mounted on an airplane by the Range and Bearing
Environmental Resource Mapping Corporation, who also
acquire the project’s data sets, and supply the GPS/INS
positioning for each frame of imagery.

Before reaching the DSM module, a flat field radiometric
calibration is applied to the imagery. The flat field is a
multiplicative mask that was previously derived from a white
light calibration procedure.

Also, geometrically, the camera was self-calibrated for the given
camera settings.  The tie points are automatically generated
using area correlation without manual intervention, using the
remotely sensed imagery that is routinely collected.  However,
for calibration, a small set of flight lines are needed that are
orthogonal to the main set of flight lines, to supply a sufficiently
geometrically rich data set for extracting the camera calibration



parameters. These consist of standard radial and tangential
distortion, on top of an affine transformation between the focal
and image planes. Calibration is not required for every data set
due to the inherent stability of the camera.

The DSM module is described in the next section.  After the
DSM construction, (near true) ortho mosaicking is performed,
as well as using the ortho image frames to explore the BRDF
qualities of the data set. For a typical FIFEDOM data set, there
are about 26 distinct frames, which view a region from different
zenith and azimuth angles. Moreover, since the FIFEDOM data
have 12-bit radiometric resolution, even small changes in view-
angle induce a detectable change in image brightness.
FIFEDOM explores a wide range of the issues associated with
BRDF-based land classification, but that discussion is beyond
the scope of this paper.

3. DSM

This section describes the workflow of the FIFEDOM DSM
module and discusses its major components and their
interrelationships. The process is performed based on a
hierarchical coarse-to-fine strategy, where the final output is a
seamless DSM that covers the entire area. The process consists
of four fundamental steps as follows:

1. Image Pyramid Generation – images are down sampled to
different resolution layers.

2. Point Feature Extraction – a list of interesting points is
extracted individually for each of the images.

3. Multiple Points Matching – the extracted points in the
different images are matched.

4. Multiple Forward Intersection – match points consisting of
two or more points enables reconstruction of the 3D
location of the object point on the terrain.

3.1 Initial Search Space

One of the fundamental tasks in the proposed DSM generation
algorithm is to identify and to measure conjugate (homologous)
points in two or more overlapping images, a process known as
feature/image matching. There are many interesting aspects to
image matching, such as determination of initial values and
suitable approximations, the selection of exact correspondence
from multiple solutions, outliers detection and removal, and
mathematical modeling of terrain surface, to name a few. In this
section we focus on the constraints which restrict the space of
possible matching solutions, such as setting bounds on the
search area, which also begins the image matching process
rather close to the true solution.

The FIFEDOM camera is a frame camera with a central
perspective projection. Central perspective projection provides
a very powerful constraint, namely that of epipolar geometry.
Given two images and a 3D point in object space, the epipolar
geometry is defined as a plane containing the object point and
the two projection centers of both images. If the relative
orientation of two images is known, for a given point in one
image the epipolar line in the other image can be computed, and
the corresponding point must lie on this epipolar line. Thus, the
image-matching problem is reduced from a two- to a one-
dimensional task. In order to facilitate matching along epipolar
lines in a multiple image environment such as FIFEDOM, the
epipolar geometry should be constructed on-the-fly using the
relative orientation parameters of the images. The epipolar

geometry constraint is applied in the process of Multiple Points
Matching (see Section 3.3), where the process is searching for
the candidate homologous points within a search area along the
epipolar lines. This reduces ambiguity and computational cost.

To further reduce the initial search space in the matching
process a hierarchical coarse-to-fine strategy is used. In this
process images are represented in a variety of resolutions,
leading to an image pyramid. The images are organized from
coarse-to-fine pixel resolution, and results achieved on one
resolution are considered as approximations for the next finer
level. A coarser resolution is equivalent to a smaller image
scale, and a larger pixel size. Thus, the ratio between the flying
height and the terrain height increases as the resolution
decreases, and local disturbances such as occlusions become
less of a problem (Hepkie 1996). In this work, a low-pass
Gaussian kernel is used to generate the image pyramid of
FIFEDOM images.

3.2 Point Feature Extraction

In the previous section we discussed some simple but powerful
methods to reduce the search space. Now, the issue is the
selection of appropriate matching primitives. In fact, the
distinction between different matching primitives is probably
the major difference between the various matching algorithms.
This is true because this selection influences the whole process
of the matching. These primitives fall into two broad categories,
windows composed of gray values (area based matching), and
features extracted in each image a priori (feature based
matching). We selected a feature-based matching approach in
this work, where the Förstner operator is used to extract salient
points as matching primitives in each image individually prior
to the matching process (Förstner 1986). The advantage of the
point selection is obvious. It leads to a significant information
reduction, as we have only to deal with a set of points, not all
pixels in the images.

Each extracted point is characterized by a set of attributes.
These attributes are the key elements in the success of the
upcoming process of Multiple Point Matching, as they are input
parameters to a weight function (Equation 1), which actually
establishes the similarity measures between the candidate
homologous points in the overlapping images (see Section 3.3
for details).

3.3 Multiple Point Matching

The objective of the multiple point matching is to determine
precise locations of homologous points from n images ( 2≥n ).
All the points should contribute simultaneously to the solution
to exploit a major advantage that digital image matching offers.
This results in a higher redundancy for the matching problem
and thus a greater reliability is achieved for the results
(Baltsavias 1991). The following two sections discuss the
overall concept of the multiple point matching problem and the
potential solution to this problem.

Multiple Point Matching Problem: Figure 1 illustrates the
multiple point matching problem. We have five overlapping
images, all of which contain the same building.  Point p1 in
Image 1 is a point of interest (the upper right corner of the
building).  The multiple point matching problem in this case is
to find the set of points in all the other images that best match
point p1 in image 1.  Each of the Images 2 to 5 has a set of
candidate points that potentially match point p1. These are the



red and green points (the blue points are candidates for other
points, but not for point p1). The Image 2 has two candidate
points, and Images 3, 4, and 5 each have three candidate points.
It is impossible to have a candidate point from the same image
as point p1.

Figure 1: Multiple point matching problem

By simply looking at the figure, we see that points p2, p3, p4,
and p5 (drawn in red) are the set of points that best match point
p1 in Image 1. But how do we determine algorithmically that
this is the optimal solution?

3.3.1 N-partite maximum-weight clique problem: The first
step in solving the problem is to associate a weight, or a
measure of similarity, between p1 and each candidate point for
p1 in the other images. The similarity weight is computed based
on the weight function fij:
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Where wij is the correspondence weight, s1, s2, s3, … are the
similarity measures between the candidate homologous points
such as normalized cross correlation, and n is the number of
overlapping images that contain candidate points for p1.

Figure 2: n-partite undirected weighted graph

Once we have generated the weights for every pair of
candidates points, we then construct an undirected weighted n-
partite graph G=(V, E) where V is the set of all distinct
candidate points and E is generated by considering the weight
of all the points previously matched. Figure 2 shows the
resulting partially-drawn graph. All the edges connecting
candidate points are drawn in for point p and q, along with their
weights. There would certainly be more edges connecting
candidate points for points p2, p3, p4, and p5, but the graph would
be far too crowded. Once this graph G is constructed, we solve
the problem of multiple points matching by finding a set of
vertices, which form a maximum weight clique.

Thus, we can reduce the multiple point matching problem to the
maximum-weight clique problem. The edges that connect the
maximum-weight-clique are drawn with solid lines in Figure 2.
All other lines are dashed. A similar approach is reported by
Tsingas (1994) to solve the matching problem in the digital
point transfer process.

3.4 Multiple Forward Intersection

The idea is that the 3D position of the matching points in object
space (terrain/model co-ordinates) should be determined from
the simultaneous contribution of the 2D co-ordinates of the
homologous points in n (n ≥ 2) images. This can be obtained
directly by spatial forward intersection of corresponding space
rays as the result of a least squares solution, as depicted in
Figure 3. The mapping relation between the point in 3D object
space and its perspective projection in 2D image space is
represented by the classical collinearity equations (Ameri
2000). The required mapping parameters are derived through a
bundle adjustment process in earlier phases, which form the
refined model parameters and are input to the DSM module.

Figure 3: Multiple Forward Intersection

The cloud of 3D points generated in each pyramid level n is
used as a coarse approximation of terrain heights for the next
level n+1. Therefore a simple terrain modeling process is used
to filter out the erroneous points and convert the cloud of 3D
points into a possibly outliers-free TIN data structure, and from
that to a GRID structure.

Figure 4 illustrates an example of the generated digital surface
model. The data set consists of seven overlapping images
acquired in three different flight lines, 1500m above the ground
with 60% overlap in both cross- and along-track direction. It
covers an area of 900m x 700m of the terrain.
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Figure 4: 3D perspective view of generated DSM

Since the 3D position of the points are derived based on a LS
solution, the estimated variances (σ2

x, σ2
y, σ2

z) of the terrain
point co-ordinates are used as the quality measures to detect and
remove the potential outliers from the result.

Planimetric threshold tp = 0.5 x GSD = 0.6m
Altimetric threshold th = 1.5 x tp = 0.9m

Total # of 3D points = 12530;
Total # of potential outliers = 1736

# of intersecting rays 2 3 4 5 6 7

# of reconstructed 3D points 999 7322 2653 918 377 181

# of potential outliers /
% of potential outliers

822/
82%

853/
12%

99/
2%

2/
0%

0/
0%

0/
0%

Table 1: Relative number of potential outliers vanishes with an
increasing number of images.

Table 1 summarizes some of the statistical measures regarding
the generated DSM. Note that the number of outliers is
approaching zero as the number of images incorporating into
the solution increases. This preliminary result is in agreement
with the initial motivation of the FIFEDOM project, that high
information content and the great wealth of information in
highly-overlapped image frames improves the resulting geo-
spatial production significantly.

4. CONCLUSION

We have introduced a new method for the reliable and efficient
reconstruction of a digital surface model through utilization of
multiview, multiframe, highly-overlapped digital images. The
results presented are intermediate results and thus some of the
processes are only implemented in a simplified form such as
terrain surface modeling and outliers detection. These processes
will be fully implemented in the next stage of this study, which
subsequently improves the result and efficiency of the proposed
method.

5. REFERENCES

Ackerman, F. (1984), Digital image correlation: performance
and potential application in photogrammetry, Photogrammetric
Record, Vol. 11, No. 64, pp. 429-439.

Ameri, B. (2000), Feature Based Model Verification (FBMV):
a new concept for hypothesis validation in building
reconstruction, IAPRS Vol. 33, part B3, Amsterdam, The
Netherlands

Baltsavias, E. (1991), Multiphoto geometrically constrained
matching, Dissertation, Institut für Geodäsie und
Photogrammetrie, Mitteilungen der ETH Zürich (49).

Förstner, W. (1982), On the geometric precision of digital
correlation, IAPRS Vol. 24, No. 3, pp. 176-189.

Förstner, W. (1986), A feature based correpondence algorithm
for image matching, IAPRS, Vol. 26, No. 3/3, pp. 150-166.

Heipke, C. (1996), Overview of image matching techniques,
OEEPE Workshop on the Application of Digital
Photogrammetric Workstations, OEEPE Official Publications
No. 33, 173-189

Helava, U. V. (1976), Digital correlation in photogrammetric
instruments, IAP, Vol. 21, No. 3.

Schenk, T. (1999), Digital Photogrammetry, Vol. 1,
TerraScience, OH, USA.

Tsingas, V. (1994), A graph-theoretical approach for multiple
feature matching and its application on digital point transfer,
IAPRS Vol. 30, No.3, pp. 865-871.

6. ACKNOWLEDGEMENTS

The authors express their gratitude to Precarn Incorporated for
partial funding support of this project, and to Triathlon Ltd. for
helping to define the DSM requirements and continued
evaluation of the results. We acknowledge the Range and
Bearing Environmental Resource Mapping Corporation for
acquisition of the test data.


